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Chapter 1

Questions

1.1 Olympic 1994

1.1.1 Day 1, 1994

Problem 1. (13 points)

a) Let A be a n × n, n ≥ 2, symmetric, invertible matrix with real

positive elements. Show that zn ≤ n2 − 2n, where zn is the number of

zero elements in A−1.

b) How many zero elements are there in the inverse of the n×n matrix

A =


1 1 1 1 . . . 1
1 2 2 2 . . . 2
1 2 1 1 . . . 1
1 2 1 2 . . . 2
. . . . . . . . . . . . . . . . . .
1 2 1 2 . . . . . .


Problem 2. (13 points)

Let f ∈ C1(a, b), lim
x→a+

f(x) =∞, lim
x→b−

f(x) = −∞ and f ′(x)+f 2(x) ≥
−1 for x ∈ (a, b). Prove that b − a ≥ π and give an example where

b− a = π.

Problem 3. (13 points)

Give a set S of 2n − 1, n ∈ N, different irrational numbers. Prove

that there are n different elements x1, x2, . . . , xn ∈ S such that for all

non-negative rational numbers a1, a2, . . . , an with a1 + a2 + · · · an > 0 we

have that a1x1 + a2x2 + · · ·+ anxn, is an irrational number.

Problem 4. (18 points)

6



1.1. Olympic 1994 7

Let α ∈ R\{0} and suppose that F and G are linear maps (operators)

from Rn satisfying F ◦G−G ◦ F = αF .

a) Show that for all k ∈ N one has F k ◦G−G ◦ F k = αkF k.

b) Show that there exists k ≥ 1 such that F k = 0.

Problem 5. (18 points)

a) Let f ∈ C[0, b], g ∈ C(R) and let g be periodic with period b. Prove

that
b∫
0
f(x)g(nx)dx has a limit as n→∞ and

lim
n→∞

b∫
0

f(x)g(nx)dx =
1

b

b∫
0

f(x)dx

b∫
0

g(x)dx.

b) Find

lim
n→∞

π∫
0

sinx

1 + 3 cos2 nx
dx.

Problem 6. (25 points)

Let f ∈ C2[0, N ] and |f ′(x)| < 1, f”(x) > 0 for every x ∈ [0, N ]. Let

0 ≤ m0 < m1 < · · · < mk ≤ N be integers such that ni = f(mi) are also

integers for i = 0, 1, . . . , k. Denote bi = ni - ni-1 and ai = mi - mi-1 for

i = 1,2, ... , k.

a) Prove that

−1 <
b1
a1
<
b2
a2
< · · · < bk

ak
< 1.

b) Prove that for every choice of A > 1 there are no more than
N

A
indices j such that aj > A.

c) Prove that k ≤ 3N 2/3 (i.e. there are no more than 3N 2/3 integer

points on the curve y = f(x), x ∈ [0, N ]).

1.1.2 Day 2, 1994

Problem 1. (14 points)
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Let f ∈ C1[a, b], f(a) = 0 and suppose that λ ∈ R, λ > 0, is such that

|f ′(x)| ≤ λ|f(x)|

for all x ∈ [a, b]. Is it true that f(x) = 0 for all x ∈ [a, b]?

Problem 2. (14 points)

Let f : R2 → R be given by f(x, y) = (x2 − y2)e−x
2−y2

.

a) Prove that f attains its minimum and its maximum.

b) Determine all points (x, y) such that
∂f

∂x
(x, y) =

∂f

∂y
(x, y) = 0 and

determine for which of them f has global or local minimum or maximum.

Problem 3. (14 points)

Let f be a real-valued function with n + 1 derivatives at each point

of R. Show that for each pair of real numbers a, b, a < b, such that

ln
( f(b) + f ′(b) + · · ·+ f (n)(b)

f(a) + f ′(a) + · · ·+ f (n)(a)

)
= b− a

there is a number c in the open interval (a, b) for which

f (n+1)(c) = f(c).

Note that ln denotes the natural logarithm.

Problem 4. (18 points)

Let A be a n× n diagonal matrix with characteristic polynomial

(x− c1)d1(x− c2)d2 . . . (x− ck)dk,

where c1, c2, . . . , ck are distinct (which means that c1 appears d1 times

on the diagonal, c2 appears d2 times on the diagonal, etc. and d1 + d2 +

· · ·+ dk = n).

Let V be the space of all n × n matrices B such that AB = BA.

Prove that the dimension of V is

d2
1 + d2

2 + · · ·+ d2
k.

Problem 5. (18 points)



1.2. Olympic 1995 9

Let x1, x2, . . . , xk be vectors of m-dimensional Euclidian space, such

that x1 + x2 + · · · + xk = 0. Show that there exists a permutation π of

the integers {1, 2, . . . , k} such that

‖
n∑
i=1

xπ(i) ‖≤
( k∑

i=1

‖ xi ‖2
)1/2

for each n = 1, 2, . . . , k.

Note that ‖ . ‖ denotes the Euclidian norm.

Problem 6. (22 points)

Find lim
N→∞

ln2N

N

N−2∑
k=2

1

ln k.ln(N − k)
. Note that ln denotes the natural

logarithm.

1.2 Olympic 1995

1.2.1 Day 1, 1995

Problem 1. (10 points)

Let X be a nonsingular matrix with columns Xl, X2, . . . , Xn. Let Y

be a matrix with columns X2, X3, . . . , Xn, 0. Show that the matrices

A = Y X−1 and B = X−1Y have rank n − 1 and have only 0’s for

eigenvalues.

Problem 2. (15 points)

Let f be a continuous function on [0, 1] such that for every x ∈ [0, 1]

we have
1∫
x

f(t)dt ≥ 1− x2

2
. Show that

1∫
0
f 2(t)dt ≥ 1

3
.

Problem 3. (15 points)

Let f be twice continuously differentiable on (0,+∞) such that

lim
x→0+

f ′(x) = −∞

and

lim
x→0+

f”(x) = +∞.

Show that

lim
x→0+

f(x)

f ′(x)
= 0.
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Problem 4. (15 points)

Let F : (1,∞)→ R be the function defined by

F (x) :=

x2∫
x

dt

lnt
.

Show that F is one-to-one (i.e. injective) and find the range (i.e. set of

values) of F .

Problem 5. (20 points)

Let A and B be real n × n matrices. Assume that there exist n + 1

different real numbers tl, t2, . . . , tn+1 such that the matrices

Ci = A+ tiB, i = 1, 2, . . . , n+ 1,

are nilpotent (i.e. Cn
i = 0).

Show that both A and B are nilpotent.

Problem 6. (25 points)

Let p > 1. Show that there exists a constant Kp > 0 such that for

every x, y ∈ R satisfying |x|p + |y|p = 2, we have

(x− y)2 ≤ Kp(4− (x+ y)2).

1.2.2 Day 2, 1995

Problem 1. (10 points)

Let A be 3×3 real matrix such that the vectors Au and u are orthog-

onal for each column vector u ∈ R3. Prove that:

a) AT = −A, where AT denotes the transpose of the matrix A;

b) there exists a vector v ∈ R3 such that Au = v×u for every u ∈ R3,

where v × u denotes the vector product in R3.

Problem 2. (15 points)

Let {bn}∞n=0 be a sequence of positive real numbers such that b0 =

1, bn = 2 +
√
bn−1 − 2

√
1 +
√
bn−1. Calculate
∞∑
n=1

bn2
n.
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Problem 3. (15 points)

Let all roots of an n-th degree polynomial P (z) with complex coeffi-

cients lie on the unit circle in the complex plane. Prove that all roots of

the polynomial

2zP ′(z)− nP (z)

lie on the same circle.

Problem 4. (15 points)

a) Prove that for every ε > 0 there is a positive integer n and real

numbers λ1, . . . , λn such that

max
x∈[−1,1]

∣∣∣x− n∑
k=1

λkx
2k+1

∣∣∣ < ε.

b) Prove that for every odd continuous function f on [−1, 1] and for

every ε > 0 there is a positive integer n and real numbers µ1, . . . , µn such

that

max
x∈[−1,1]

∣∣∣f(x)−
n∑
k=1

µkx
2k+1

∣∣∣ < ε.

Recall that f is odd means that f(x) = −f(−x) for all x ∈ [−1, 1].

Problem 5. (10+15 points)

a) Prove that every function of the form

f(x) =
a0

2
+ cosx+

N∑
n=2

an cos(nx)

with |a0| < 1, has positive as well as negative values in the period [0, 2π).

b) Prove that the function

F (x) =
100∑
n=1

cos(n
3
2x)

has at least 40 zeros in the interval (0, 1000).

Problem 6. (20 points)
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Suppose that {fn}∞n=1 is a sequence of continuous functions on the

interval [0, 1] such that

1∫
0

fm(x)fn(x)dx =

{
1 if n = m
0 if n 6= m

and

sup{|fn(x)| : x ∈ [0, 1] and n = 1, 2, . . .} < +∞.

Show that there exists no subsequence {fnk} of {fn} such that lim
k→∞

fnk(x)

exists for all x ∈ [0, 1].

1.3 Olympic 1996

1.3.1 Day 1, 1996

Problem 1. (10 points)

Let for j = 0, ..., n, aj = a0 + jd, where a0, d are fixed real numbers.

Put

A =


a0 a1 a2 . . . an
a1 a0 a1 . . . an−1
a2 a1 a0 . . . an−2
. . . . . . . . . . . . . . . . . . . . . . . .
an an−1 an−2 . . . a0


Calculate det(A), where det(A) denotes the determinant of A.

Problem 2. (10 points) Evaluate the definite integral

π∫
−π

sinnx

(1 + 2x) sinx
dx,

where n is a natural number.

Problem 3. (15 points)

The linear operator A on the vector space V is called an involution if

A2 = E where E is the identity operator on V . Let dimV = n <∞.

(i) Prove that for every involution A on V there exists a basis of V

consisting of eigenvectors of A.
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(ii) Find the maximal number of distinct pairwise commuting involu-

tions on V .

Problem 4. (15 points)

Let a1 = 1, an =
1

n

n−1∑
k=1

akan−k for n ≥ 2. Show that

(i) lim sup
n→∞

|an|1/n < 2−1/2;

(ii) lim sup
n→∞

|an|1/n ≥
2

3
.

Problem 5. (25 points)

i) Let a, b be real number such that b ≤ 0 and 1 + ax + bx2 ≥ 0 for

every x in [0, 1]. Prove that

lim
n→∞

n

1∫
0

(1 + ax+ bx2)dx =

{
−1

a
if a < 0

+∞ if a ≥ 0.

ii) Let f : [0, 1] → [0,∞) be a function with a continuous second

derivative and let f ′′(x) ≤ 0 for every x in [0,1]. Suppose that L =

lim
n→∞

n
1∫
0

(f(x))ndx exists and 0 < L < +∞. Prove that f ′ has a constant

sign and minx∈[0,1] |f ′(x)| = L−1.

Problem 6. (25 points)

Upper content of a subset E of the plane R is defined as

C(E) = inf
{ n∑

i=1

diam (Ei)
}

where inf is taken over all finite of sets E1, . . . , En, n ∈ N in R2 such

that E ⊂
n
∪
i=1
Ei. Lower content of E is defined as

K(E) = sup{length(L) : L is a closed line segment

onto which E can be contracted}

Show that

(a) C(L) = lenght (L) if L is a closed line segment;

(b) C(E) ≥ K(E);



1.3. Olympic 1996 14

(c) the equality in (b) needs not hold even if E is compact.

Hint. If E = T∪T ′ where T is the triangle with vertices (−2, 2), (2, 2)

and (0, 4), and T ′ is its reflexion about the x-axis, then C(E) = 8 >

K(E).

Remarks: All distances used in this problem are Euclidian. Di-

ameter of a set E is diam (E) = sup{dist (x, y) : x, y ∈ E}. Con-

traction of a set E to a set F is a mapping f : E 7→ F such that

dist (f(x), f(y)) ≤ dist (x, y) for all x, y ∈ E. A set E can be contracted

onto a set F if there is a contraction f of E to F which is onto, i.e., such

that f(E) = F . Triangle is defined as the union of the three segments

joining its vertices, i.e., it does not contain the interior.

1.3.2 Day 2, 1996

Problem 1. (10 points)

Prove that if f : [0, 1] → [0, 1] is a continuous function, then the

sequence of iterates xn+l = f(xn) converges if and only if

lim
n→∞

(xn+1 − xn) = 0.

Problem 2. (10 points)

Let θ be a positive real number and let cosht =
et + e−t

2
denote the

hyperbolic cosine. Show that if k ∈ N and both coshkθ and cosh(k+1)θ

are rational, then so is coshθ.

Problem 3. (15 points)

Let G be the subgroup of GL2(R), generated by A and B, where

A =
[
2 0
0 1

]
, B =

[
1 1
0 1

]
Let H consist of those matrices

(
a11 a12
a21 a22

)
in G for which a11 = a22 = 1.

(a) Show that H is an abelian subgroup of G.

(b) Show that H is not finitely generated.

Remarks. GL2(R) denotes, as usual, the group (under matrix mul-

tiplication) of all 2 × 2 invertible matrices with real entries (elements).
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Abelian means commutative. A group is finitely generated if there are a

finite number of elements of the group such that every other element of

the group can be obtained from these elements using the group opera-

tion.

Problem 4. (20 points)

Let B be a bounded closed convex symmetric (with respect to the

origin) set in R2 with boundary the curve Γ. Let B have the property

that the ellipse of maximal area contained in B is the disc D of radius 1

centered at the origin with boundary the circle C. Prove that A∩Γ 6= ∅
for any arcA of C of length l(A) ≥ π

2
.

Problem 5. (20 points)

(i) Prove that

lim
n→+∞

∞∑
n=1

nx

(n2 + x)2 =
1

2
.

(ii) Prove that there is a positive constant c such that for every x ∈
[1,∞) we have ∣∣∣ ∞∑

n=1

nx

(n2 + x)2 −
1

2

∣∣∣ ≤ c

x
.

Problem 6. (Carleman’s inequality) (25 points)

(i) Prove that for every sequence {an}∞n=1 such that an > 0, n =

1, 2, . . . and
∞∑
n=1

an <∞, we have

∞∑
n=1

(a1a2 . . . an)
1
n < e

∞∑
n=1

an,

where e is the natural log base.

(ii) Prove that for every ε > 0 there exists a sequence {an}∞n=1 such

that an > 0, n = 1, 2, . . . ,
∞∑
n=1

an <∞ and

∞∑
n=1

(a1a2 . . . an)
1
n > (e− ε)

∞∑
n=1

an.



1.4. Olympic 1997 16

1.4 Olympic 1997

1.4.1 Day 1, 1997

Problem 1.

Let {εn}∞n=1 be a sequence of positive real numbers, such that lim
n→∞

εn =

0. Find

lim
n→∞

1

n

n∑
k=1

ln
(k
n

+ εn

)
,

where ln denotes the natural logarithm.

Problem 2.

Suppose
∞∑
n=1

an converges. Do the following sums have to converge as

well?

a) a1 + a2 + a4 + a3 + a8 + a7 + a6 + a5 + a16 + a15 + · · ·+ a9 + a32 + · · ·
b) a1 + a2 + a3 + a4 + a5 + a7 + a6 + a8 + a9 + a11 + a13 + a15 + a10 +

a12 + a14 + a16 + a17 + a19 + · · ·
Justify your answers.

Problem 3.

Let A and B be real n× n matrices such that A2 +B2 = AB. Prove

that if BA− AB is an invertible matrix then n is divisible by 3.

Problem 4.

Let α be a real number, 1 < α < 2.

a) Show that α has a unique representation as an infinite product

α =
(

1 +
1

n1

)(
1 +

1

n2

)
. . .

b) Show that α is rational if and only if its infinite product has the

following property:

For some m and all k ≥ m,

nk+1 = n2
k.

Problem 5. For a natural n consider the hyperplane

Rn
0 =

{
x = (x1, x2, . . . , xn) ∈ Rn :

n∑
i=1

xi = 0
}
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and the lattice Zn
0 = {y ∈ Rn

0 : all yi are integers}. Define the (quasi-

)norm in Rn by ‖ x ‖p=
( n∑
i=1
|xi|p

)1/p
if 0 < p < ∞, and ‖ x ‖∞=

max
i
|xi|.

a) Let x ∈ Rn
0 be such that

max
i
xi −min

i
xi ≤ 1.

For every p ∈ [1,∞] and for every y ∈ Zn
0 prove that

‖ x ‖p≤‖ x+ y ‖p .

b) For every p ∈ (0, 1), show that there is an n and an x ∈ Rn
0 with

max
i
xi −min

i
xi ≤ 1 and an y ∈ Zn

0 such that

‖ x ‖p>‖ x+ y ‖p .

Problem 6. Suppose that F is a family of finite subsets of N and for

any two sets A,B ∈ F we have A ∩B 6= ∅.
a) Is it true that there is a finite subset Y of N such that for any

A,B ∈ F we have A ∩B ∩ Y 6= ∅?
b) Is the statement a) true if we suppose in addition that all of the

members of F have the same size?

Justify your answers.

1.4.2 Day 2, 1997

Problem 1.

Let f be a C3(R) non-negative function, f(0) = f ′(0) = 0, 0 < f ′′(0).

Let

g(x) =
(√f(x)

f ′(x)

)′
for x 6= 0 and g(0) = 0. Show that g is bounded in some neighbourhood

of 0. Does the theorem hold for f ∈ C2(R)?

Problem 2.
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Let M be an invertible matrix of dimension 2n × 2n, represented in

block form as

M =
[
A B
C D

]
and M−1 =

[
E F
G H

]
.

Show that detM.detH = detA.

Problem 3.

Show that
∞∑
n=1

(−1)n−1 sin(logn)

nα
converges if and only if α > 0.

Problem 4.

a) Let the mapping f : Mn → R from the space Mn = Rn2

of n × n
matrices with real entries to reals be linear, i.e.:

f(A+B) = f(A) + f(B), f(cA) = cf(A) (1)

for any A,B ∈ Mn, c ∈ R. Prove that there exists a unique matrix

C ∈ Mn such that f(A) = tr(AC) for any A ∈ Mn. (If A = {aij}ni,j=1

then tr(A) =
n∑
i=1

aii).

b) Suppose in addition to (1) that

f(A.B) = f(B.A) (2)

for any A,B ∈ Mn. Prove that there exists λ ∈ R such that f(A) =

λ.tr(A).

Problem 5.

Let X be an arbitrary set, let f be an one-to-one function mapping

X onto itself. Prove that there exist mappings g1, g2 : X → X such that

f = g1 ◦ g2 and g1 ◦ g1 = id = g2 ◦ g2, where id denotes the identity

mapping on X.

Problem 6.

Let f : [0, 1] → R be a continuous function. Say that f ”crosses the

axis” at x if f(x) = 0 but in any neighbourhood of x there are y, z with

f(y) < 0 and f(z) > 0.

a) Give an example of a continuous function that ”crosses the axis”

infiniteley often.
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b) Can a continuous function ”cross the axis” uncountably often?

Justify your answer.

1.5 Olympic 1998

1.5.1 Day 1, 1998

Problem 1. (20 points)

Let V be a 10-dimensional real vector space and U1 and U2 two linear

subspaces such that U1 ⊆ U2, dimRU1 = 3 and dimRU2 = 6. Let ε be

the set of all linear maps T : V → V which have U1 and U2 as invariant

subspaces (i.e., T (U1) ⊆ U1 and T (U2) ⊆ U2). Calculate the dimension

of ε as a real vector space.

Problem 2. Prove that the following proposition holds for n = 3 (5

points) and n = 5 (7 points), and does not hold for n = 4 (8 points).

”For any permutation π1 of {1, 2, . . . , n} different from the identity

there is a permutation π2 such that any permutation π can be obtained

from π1 and π2 using only compositions (for example, π = π1 ◦ π1 ◦ π2 ◦
π1).”

Problem 3. Let f(x) = 2x(1− x), x ∈ R. Define

f(n) =

n︷ ︸︸ ︷
f ◦ · · · ◦ f .

a) (10 points) Find limn→∞
1∫
0
fn(x)dx

b) (10 points) Compute
1∫
0
fn(x)dx for n = 1, 2, . . ..

Problem 4. (20 points)

The function f : R → R is twice differentiable and satisfies f(0) =

2, f ′(0) = −2 and f(1) = 1. Prove that there exists a real number

ξ ∈ (0, 1) for which

f(ξ).f ′(ξ) + f ′′(ξ) = 0.

Problem 5. Let P be an algebraic polynomial of degree n having only

real zeros and real coefficients.
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a) (15 points) Prove that for every real x the following inequality

holds:

(n− 1)(P ′(x))2 ≥ nP (x)P ′′(x). (2)

b) (5 points) Examine the cases of equality.

Problem 6. Let f : [0, 1] → R be a continuous function with the

property that for any x and y in the interval,

xf(y) + yf(x) ≤ 1.

a) (15 points) Show that

1∫
0

f(x)dx ≤ π

4
.

b) (5 points) Find a function, satisfying the condition, for which there

is equality.

1.5.2 Day 2, 1998

Problem 1. (20 points)

Let V be a real vector space, and let f, f1, . . . , fk be linear maps from

V to R Suppose that f(x) = 0 whenever f1(x) = f2(x) = · · · = fk(x) =

0. Prove that f is a linear combination of f1, f2, . . . , fk.

Problem 2. (20 points) Let

P = {f : f(x) =
3∑

k=0

akx
k, ak ∈ R, |f(±1)| ≤ 1, |f(±1

2
)| ≤ 1}

Evaluate

sup
f∈P

max
−1≤x≤1

|f ′′(x)|

and find all polynomials f ∈ P for which the above ”sup” is attained.

Problem 3. (20 points) Let 0 < c < 1 and

f(x) =


x

c
for x ∈ [0, c],

1− x
1− c

for x ∈ [c, 1].
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We say that p is an n-periodic point if

f(f(. . . f(︸ ︷︷ ︸
n

p))) = p

and n is the smallest number with this property. Prove that for every

n ≥ 1 the set of n-periodic points is non-empty and finite.

Problem 4. (20 points) Let An = {1, 2, . . . , n}, where n ≥ 3. Let F
be the family of all non-constant functions f : An → An satisfying the

following conditions:

(1) f(k) ≤ f(k + 1) for k = 1, 2, . . . , n− 1,

(2) f(k) = f(f(k + 1)) for k = 1, 2, . . . , n − 1. Find the number of

functions in F .

Problem 5. (20 points)

Suppose that S is a family of spheres (i.e., surfaces of balls of positive

radius) in R2, n ≥ 2, such that the intersection of any two contains at

most one point. Prove that the set M of those points that belong to at

least two different spheres from S is countable.

Problem 6. (20 points) Let f : (0, 1) → [0,∞) be a function that is

zero except at the distinct points a1, a2, . . .. Let bn = f(an).

(a) Prove that if
∞∑
n=1

bn < ∞, then f is differentiable at at least one

point x ∈ (0, 1).

(b) Prove that for any sequence of non-negative real numbers (bn)
∞
n=1

with
∞∑
n=1

bn =∞, there exists a sequence (an)
∞
n=1 such that the function

f defined as above is nowhere differentiable.

1.6 Olympic 1999

1.6.1 Day 1, 1999

Problem 1.

a) Show that for any m ∈ N there exists a real m×m matrix A such

that A3 = A+ I, where I is the m×m identity matrix. (6 points)
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b) Show that detA > 0 for every real m ×m matrix satisfying A3 =

A+ I. (14 points)

Problem 2. Does there exist a bijective map π : N→ N such that

∞∑
n=1

π(n)

n2 <∞?

(20 points)

Problem 3. Suppose that a function f : R→ R satisfies the inequality∣∣∣ n∑
k=1

3k(f(x+ ky)− f(x− ky))
∣∣∣ ≤ 1 (1)

for every positive integer n and for all x, y ∈ R. Prove that f is a

constant function. (20 points)

Problem 4. Find all strictly monotonic functions f : (0,+∞) →

(0,+∞) such that f
( x2

f(x)

)
≡ x. (20 points)

Problem 5.

Suppose that 2n points of an n × n grid are marked. Show that for

some k > l one can select 2k distinct marked points, say a1, . . . , a2k, such

that a1 and a2 are in the same row, a2 and a3 are in the same column,

... , a2k−l and a2k are in the same row, and a2k and a1 are in the same

column. (20 points)

Problem 6.

a) For each 1 < p <∞ find a constant cp <∞ for which the following

statement holds: If f : [−1, 1] → R is a continuously differentiable

function satisfying f(1) > f(−1) and |f ′(y)| ≤ 1 for all y ∈ [−1, 1],

then there is an x ∈ [−1, 1] such that f ′(x) > 0 and |f(y) − f(x)| ≤
cp(f

′(x))1/p|y − x| for all y ∈ [−1, 1]. (10 points)

b) Does such a constant also exist for p = 1? (10 points)

1.6.2 Day 2, 1999

Problem 1. Suppose that in a not necessarily commutative ring R the

square of any element is 0. Prove that abc + abc = 0 for any three
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elements a, b, c. (20 points)

Problem 2. We throw a dice (which selects one of the numbers 1, 2, . . . , 6

with equal probability) n times. What is the probability that the sum

of the values is divisible by 5? (20 points)

Problem 3.

Assume that x1, . . . , xn ≥ −1 and
n∑
i=1

x3
i = 0. Prove that

n∑
i=1

xi ≤
n

3
.

(20 points)

Problem 4. Prove that there exists no function f : (0,+∞)→ (0,+∞)

such that f 2(x) ≥ f(x+ y)(f(x) + y) for any x, y > 0. (20 points)

Problem 5. Let S be the set of all words consisting of the letters x, y, z,

and consider an equivalence relation ∼ on S satisfying the following

conditions: for arbitrary words u, v, w ∈ S
(i) uu ∼ u;

(ii) if v ∼ w, then uv ∼ uw and vu ∼ wu.

Show that every word in S is equivalent to a word of length at most

8. (20 points)

Problem 6. Let A be a subset of Zn =
Z

nZ
containing at most

1

100
lnn

elements. Define the rth Fourier coefficient of A for r ∈ Zn by

f(r) =
∑
s∈A

exp
(2πi

n
sr
)
.

Prove that there exists an r 6= 0, such that |f(r)| ≥ |A|
2

. (20 points)

1.7 Olympic 2000

1.7.1 Day 1, 2000

Problem 1.

Is it true that if f : [0, 1]→ [0, 1] is

a) monotone increasing

b) monotone decreasing then there exists an x ∈ [0, 1] for which

f(x) = x?
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Problem 2.

Let p(x) = x5 +x and q(x) = x5 +x2. Find all pairs (w, z) of complex

numbers with w 6= z for which p(w) = p(z) and q(w) = q(z).

Problem 3.

A and B are square complex matrices of the same size and

rank(AB −BA) = 1.

Show that (AB −BA)2 = 0.

Problem 4.

a) Show that if (xi) is a decreasing sequence of positive numbers then( n∑
i=1

x2
i

)1/2
≤

n∑
i=1

xi√
i
.

b) Show that there is a constant C so that if (xi) is a decreasing

sequence of positive numbers then

∞∑
m=1

1√
m

( ∞∑
i=m

x2
i

)1/2
≤ C

∞∑
i=1

xi.

Problem 5.

Let R be a ring of characteristic zero (not necessarily commutative).

Let e, f and g be idempotent elements of R satisfying e + f + g = 0.

Show that e = f = g = 0.

(R is of characteristic zero means that, if a ∈ R and n is a positive

integer, then na 6= 0 unless a = 0. An idempotent x is an element

satisfying x = x2.)

Problem 6.

Let f : R → (0,∞ be an increasing differentiable function for which

lim
x→∞

f(x) =∞ and f ′ is bounded.

Let F (x) =
x∫
0
f . Define the sequence (an) inductively by

a0 = 1, an+1 = an +
1

f(an)
,
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and the sequence (bn) simply by bn = F−1(n). Prove that lim
n→∞

(an−bn) =

0.

1.7.2 Day 2, 2000

Problem 1.

a) Show that the unit square can be partitioned into n smaller squares

if n is large enough.

b) Let d ≥ 2. Show that there is a constant N(d) such that, whenever

n ≥ N(d), a d-dimensional unit cube can be partitioned into n smaller

cubes.

Problem 2. Let f be continuous and nowhere monotone on [0, 1]. Show

that the set of points on which f attains local minima is dense in [0, 1].

(A function is nowhere monotone if there exists no interval where the

function is monotone. A set is dense if each non-empty open interval

contains at least one element of the set.)

Problem 3. Let p(z) be a polynomial of degree n with complex coeffi-

cients. Prove that there exist at least n+1 complex numbers z for which

p(z) is 0 or 1.

Problem 4. Suppose the graph of a polynomial of degree 6 is tangent

to a straight line at 3 points A1, A2, A3, where A2 lies between A1 and

A3.

a) Prove that if the lengths of the segments A1A2 and A2A3 are equal,

then the areas of the figures bounded by these segments and the graph

of the polynomial are equal as well.

b) Let k =
A2A3

A1A2
and let K be the ratio of the areas of the appropriate

figures. Prove that
2

7
k5 < K <

7

2
k5.

Problem 5. Let R+ be the set of positive real numbers. Find all

functions f : R+ → R+ such that for all x, y ∈ R+

f(x)f(yf(x)) = f(x+ y).
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Problem 6. For an m × m real matrix A, eA is defined as
∞∑
n=0

1

n!
An.

(The sum is convergent for all matrices.) Prove or disprove, that for all

real polynomials p and m×m real matrices A and B, p(eAB) is nilpotent

if and only if p(eBA) is nilpotent. (A matrix A is nilpotent if Ak = 0 for

some positive integer k.)

1.8 Olympic 2001

1.8.1 Day 1, 2001

Problem 1.

Let n be a positive integer. Consider an n × n matrix with entries

1, 2, . . . , n2 written in order starting top left and moving along each row

in turn left-to-right. We choose n entries of the matrix such that exactly

one entry is chosen in each row and each column. What are the possible

values of the sum of the selected entries?

Problem 2.

Let r, s, t be positive integers which are pairwise relatively prime. If

a and b are elements of a commutative multiplicative group with unity

element e, and ar = bs = (ab)t = e, prove that a = b = e.

Does the same conclusion hold if a and b are elements of an arbitrary

noncommutative group?

Problem 3. Find lim
t↗1

(1 − t)
∞∑
n=1

tn

1 + tn
, where t ↗ 1 means that t

approaches 1 from below.

Problem 4.

Let k be a positive integer. Let p(x) be a polynomial of degree n each

of whose coefficients is −1, 1 or 0, and which is divisible by (x− 1)k. Let

q be a prime such that
q

ln q
<

k

ln(n+ 1)
. Prove that the complex qth

roots of unity are roots of the polynomial p(x).

Problem 5.

Let A be an n × n complex matrix such that A 6= λI for all λ ∈ C.
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Prove that A is similar to a matrix having at most one non-zero entry

on the main diagonal.

Problem 6.

Suppose that the differentiable functions a, b, f, g : R→ R satisfy

f(x) ≥ 0, f ′(x) ≥ 0, g(x) > 0, g′(x) > 0 for all x ∈ R,
lim
x→∞

a(x) = A > 0, lim
x→∞

b(x) = B > 0, lim
x→∞

f(x) = lim
x→∞

g(x) =∞,

and
f ′(x)

g′(x)
+ a(x)

f(x)

g(x)
= b(x).

Prove that

lim
x→∞

f(x)

g(x)
=

B

A+ 1
.

1.8.2 Day 2, 2001

Problem 1.

Let r, s ≥ 1 be integers and a0, a1 . . . , ar−1, b0, b1, . . . , bs−1 be real non-

negative numbers such that

(a0 +a1x+a2x
2 + · · ·+ar−1x

r−1 +xr)(b0 +b1x+b2x
2 + · · ·+bs−1x

s−1 +xs)

= 1 + x+ x2 + · · ·+ xr+s−1 + xr+s.

Prove that each ai and each bj equals either 0 or 1.

Problem 2.

Let a0 =
√

2, b0 = 2, an+1 =
√

2−
√

4− a2
n, bn+1 =

2bn

2 +
√

4 + b2n
.

a) Prove that the sequences (an), (bn) are decreasing and converge to

0.

b) Prove that the sequence (2nan) is increasing, the sequence (2nbn)

is decreasing and that these two sequences converge to the same limit.

c) Prove that there is a positive constant C such that for all n the

following inequality holds: 0 < bn − an <
C

8n
.

Problem 3.
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Find the maximum number of points on a sphere of radius 1 in Rn

such that the distance between any two of these points is strictly greater

than
√

2.

Problem 4.

Let A = (ak,l)k,l=1,...,n be an n× n complex matrix such that for each

m ∈ {1, . . . , n} and 1 ≤ j1 < · · · < jm ≤ n the determinant of the

matrix (ajk,jl)k,l=1,...,m is zero. Prove that An = 0 and that there exists

a permutation σ ∈ Sn such that the matrix

(aσ(k),σ(l))k,l=1...,n

has all of its nonzero elements above the diagonal.

Problem 5. Let R be the set of real numbers. Prove that there is no

function f : R→ R with f(0) > 0, and such that

f(x+ y) ≥ f(x) + yf(f(x)) for all x, y ∈ R.

Problem 6.

For each positive integer n, let fn(ϑ) = sinϑ. sin(2ϑ). sin(4ϑ) . . . sin(2nϑ).

For all real ϑ and all n, prove that

|fn(ϑ)| ≤ 2√
3

∣∣∣fn( π√
3

)∣∣∣.
1.9 Olympic 2002

1.9.1 Day 1, 2002

Problem 1. A standard parabola is the graph of a quadratic polynomial

y = x2 +ax+b with leading coefficient 1. Three standard parabolas with

vertices V1, V2, V3 intersect pairwise at points A1, A2, A3. Let A 7→ s(A)

be the reflection of the plane with respect to the x axis.

Prove that standard parabolas with vertices s (A1), s(A2), s(A3) in-

tersect pairwise at the points s(V1), s(V2), s(V3).

Problem 2. Does there exist a continuously differentiable function f :

R→ R such that for every x ∈ R we have f(x) > 0 and f ′(x) = f(f(x))?
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Problem 3. Let n be a positive integer and let

ak =
1(
n
k

) , bk = 2k−n, for k = 1, 2, . . . , n.

Show that
a1 − b1

1
+
a2 − b2

2
+ · · ·+ an − bn

n
= 0. (1)

Problem 4. Let f : [a, b] → [a, b] be a continuous function and let

p ∈ [a, b]. Define p0 = p and pn+1 = f(pn) for n = 0, 1, 2, . . .. Suppose

that the set Tp = {pn : n = 0, 1, 2, . . .} is closed, i.e., if x /∈ Tp then there

is a δ > 0 such that for all x′ ∈ Tp we have |x′ − x| ≥ δ. Show that Tp

has finitely many elements.

Problem 5. Prove or disprove the following statements:

(a) There exists a monotone function f : [0, 1] → [0, 1] such that for

each y ∈ [0, 1] the equation f(x) = y has uncountably many solutions x.

(b) There exists a continuously differentiable function f : [0, 1] →
[0, 1] such that for each y ∈ [0, 1] the equation f(x) = y has uncountably

many solutions x.

Problem 6. For an n × n matrix M with real entries let ‖ M ‖=

sup
x∈Rn\{0}

‖Mx ‖2
‖ x ‖2

, where ‖ . ‖2 denotes the Euclidean norm on Rn. As-

sume that an n× n matrix A with real entries satisfies ‖ Ak − Ak−1 ‖≤
1

2002k
for all positive integers k. Prove that ‖ Ak ‖≤ 2002 for all positive

integers k.

1.9.2 Day 2, 2002

Problem 1. Compute the determinant of the n× n matrix A = [aij],

aij =

{
(−1)|i−j|, if i 6= j
2, if i = j.

Problem 2. Two hundred students participated in a mathematical

contest. They had 6 problems to solve. It is known that each problem

was correctly solved by at least 120 participants. Prove that there must
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be two participants such that every problem was solved by at least one

of these two students.

Problem 3. For each n ≥ 1 let

an =
∞∑
k=0

kn

k!
, bn =

∞∑
k=0

(−1)k
kn

k!
.

Show that an.bn is an integer.

Problem 4. In the tetrahedron OABC, let ∠BOC = α,∠COA = β

and ∠AOB = γ. Let σ be the angle between the faces OAB and OAC,

and let τ be the angle between the faces OBA and OBC. Prove that

γ > β. cosσ + α cos τ.

Problem 5. Let A be an n×n matrix with complex entries and suppose

that n > 1. Prove that

AA = In ⇔ ∃S ∈ GLn(C such that A = SS
−1
.

(If A = [aij] then A = [aij], where aij is the complex conjugate of

aij;GLn(C) denotes the set of all n×n invertible matrices with complex

entries, and In is the identity matrix.)

Problem 6. Let f : Rn → R be a convex function whose gradient ∇f =( ∂f
∂x1

, . . . ,
∂f

∂xn

)
exists at every point of Rn and satisfies the condition

∃L > 0 ∀x1, x2 ∈ Rn ‖ ∇f(x1)−∇f(x2) ‖≤ L ‖ x1 − x2 ‖ .

Prove that

∀x1, x2 ∈ Rn ‖ ∇f(x1)−∇f(x2) ‖2≤ L < ∇f(x1)−∇f(x2), x1− x2 > .

(1)

In this formula < a, b > denotes the scalar product of the vectors a and

b.

1.10 Olympic 2003

1.10.1 Day 1, 2003

Problem 1.
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a) Let a1, a2, . . . be a sequence of real numbers such that a1 = 1 and

an+1 >
3

2
an for all n. Prove that the sequence

an(
3
2

)n−1

has a finite limit or tends to infinity. (10 points)

b) Prove that for all α > 1 there exists a sequence a1, a2, . . . with the

same properties such that

lim
an(

3
2

)n−1 = α.

(10 points)

Problem 2. Let a1, a2, . . . , a51 be non-zero elements of a field. We

simultaneously replace each element with the sum of the 50 remaining

ones. In this way we get a sequence b1, . . . , b51. If this new sequence

is a permutation of the original one, what can be the characteristic of

the field? (The characteristic of a field is p, if p is the smallest positive

integer such that x+ x+ · · ·+ x︸ ︷︷ ︸
p

= 0 for any element x of the field. If

there exists no such p, the characteristic is 0.) (20 points)

Problem 3. Let A be an n×n real matrix such that 3A3 = A2 +A+ I

(I is the identity matrix). Show that the sequence Ak converges to an

idempotent matrix. (A matrix B is called idempotent if B2 = B.) (20

points)

Problem 4. Determine the set of all pairs (a, b) of positive integers for

which the set of positive integers can be decomposed into two sets A and

B such that a.A = b.B. (20 points)

Problem 5. Let g : [0, 1] → R be a continuous function and let fn :

[0, 1]→ R be a sequence of functions defined by f0(x) = g(x) and

fn+1(x) =
1

x

x∫
0

fn(t)dt (x ∈ (0, 1], n = 0, 1, 2, . . .).
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Determine lim
n→∞

fn(x) for every x ∈ (0, 1]. (20 points)

Problem 6. Let f(z) = anz
n+an−1z

n−1 + · · ·+a1z+a0 be a polynomial

with real coefficients. Prove that if all roots of f lie in the left half-plane

{z ∈ C : Rez < 0} then

akak+3 < ak+1ak+2

holds for every k = 0, 1, ..., n− 3. (20 points)

1.10.2 Day 2, 2003

Problem 1. Let A and B be n×n real matrices such that AB+A+B =

0. Prove that AB = BA.

2. Evaluate the limit

lim
x→0+

2x∫
x

sinm t

tn
dt (m,n ∈ N).

Problem 3. Let A be a closed subset of Rn and let B be the set of all

those points b ∈ Rn for which there exists exactly one point a0 ∈ A such

that

|a0 − b| = inf
a∈A
|a− b|.

Prove that B is dense in Rn; that is, the closure of B is Rn.
Problem 4. Find all positive integers n for which there exists a family

F of three-element subsets of S = {1, 2, . . . , n} satisfying the following

two conditions:

(i) for any two different elements a, b ∈ S, there exists exactly one

A ∈ F containing both a, b;

(ii) if a, b, c, x, y, z are elements of S such that if {a, b, x}, {a, c, y}, {b, c, z} ∈
F , then {x, y, z} ∈ F .

Problem 5. a) Show that for each function f : Q×Q→ R there exists

a function g : Q→ R such that f(x, y) ≤ g(x) + g(y) for all x, y ∈ Q.

b) Find a function f : R × R → R for which there is no function

g : R→ R such that f(x, y) ≤ g(x) + g(y) for all x, y ∈ R.
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Problem 6. Let (an)n∈N be the sequence defined by

a0 = 1, an+1 =
1

n+ 1

n∑
k=0

ak
n− k + 2

.

Find the limit

lim
n→∞

n∑
k=0

ak
2k
,

if it exists.

1.11 Olympic 2004

1.11.1 Day 1, 2004

Problem 1. Let S be an infinite set of real numbers such that |s1 +

s2 + · · ·+ sk| < 1 for every finite subset {s1, s2, . . . , sk} ⊂ S. Show that

S is countable. [20 points]

Problem 2. Let P (x) = x2 − 1. How many distinct real solutions does

the following equation have:

P (P (. . . (P︸ ︷︷ ︸
2004

(x)) . . .)) = 0?

[20 points]

Problem 3. Let Sn be the set of all sums
n∑
k=1

xk, where n ≥ 2, 0 ≤

x1, x2, . . . , xn ≤
π

2
and

n∑
k=1

sinxk = 1.

a) Show that Sn is an interval. [10 points]

b) Let ln be the length of Sn. Find lim
n→∞

ln. [10 points]

Problem 4. Suppose n ≥ 4 and let M be a finite set of n points in

R3, no four of which lie in a plane. Assume that the points can be

coloured black or white so that any sphere which intersects M in at

least four points has the property that exactly half of the points in the
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intersection of M and the sphere are white. Prove that all of the points

in M lie on one sphere. [20 points]

Problem 5. Let X be a set of
(2k−4
k−2

)
+ 1 real numbers, k ≤ 2. Prove

that there exists a monotone sequence {xn}ki=1 ⊇ X such that

|xi+1 − x1| ≥ 2|xi − x1|

for all i = 2, . . . , k − 1. [20 points]

Problem 6. For every complex number z 6= {0, 1} define

f(z) :=
∑

(log z)−4,

where the sum is over all branches of the complex logarithm.

a) Show that there are two polynomials P and Q such that f(z) =
P (z)

Q(z)
for all z ∈ C\{0, 1}. [10 points]

b) Show that for all z ∈ C\{0, 1}

f(z) = z
z2 + 4z + 1

6(z − 1)4 .

[10 points]

1.11.2 Day 2, 2004

Problem 1. Let A be a real 4× 2 matrix and B be a real 2× 4 matrix

such that

AB =

 1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1

 .

Find BA. [20 points]

Problem 2. Let f, g : [a, b]→ [0,∞) be continuous and non-decreasing

functions such that for each x ∈ [a, b] we have

x∫
a

√
f(t)dt ≤

x∫
a

√
g(t)dt

and
b∫
a

√
f(t)dt =

b∫
a

√
g(g)dt.
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Prove that
b∫
a

√
1 + f(t)dt ≥

b∫
a

√
1 + g(t)dt. [20 points]

Problem 3. Let D be the closed unit disk in the plane, and let

p1, p2, . . . , pn be fixed points in D. Show that there exists a point p

in D such that the sum of the distances of p to each of p1, p2, . . . , pn is

greater than or equal to 1. [20 points]

Problem 4. For n ≥ 1 let M be an n × n complex matrix with dis-

tinct eigenvalues λ1, λ2, . . . , λk, with multiplicities m1,m2, . . . ,mk, re-

spectively. Consider the linear operator LM defined by LM(X) = MX+

XMT , for any complex n× n matrix X. Find its eigenvalues and their

multiplicities. (MT denotes the transpose of M ; that is, if M = (mk,l),

then MT = (ml,k).) [20 points]

Problem 5. Prove that
1∫

0

1∫
0

dxdy

x−1 + |ln y| − 1
≤ 1.

[20 points]

Problem 6. For n ≥ 0 define matrices An and Bn as follows: A0 =

B0 = (1) and for every n > 0

An =
(
An−1 An−1
An−1 Bn−1

)
and Bn =

(
An−1 An−1
An−1 0

)
.

Denote the sum of all elements of a matrix M by S(M). Prove that

S(An−1
k ) = S(An−1

k ) for every n, k ≥ 1. [20 points]

1.12 Olympic 2005

1.12.1 Day 1, 2005

Problem 1. Let A be the n× n matrix, whose (i, j)th entry is i+ j for

all i, j = 1, 2, . . . , n. What is the rank of A?

Problem 2. For an integer n ≥ 3 consider the sets

Sn = {(x1, x2, . . . , xn) : ∀i xi ∈ {0, 1, 2}}
An = {(x1, x2, . . . , xn) ∈ Sn : ∀i ≤ n− 2 |{xi, xi+1, xi+2}| 6= 1}
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and

Bn = {(x1, x2, . . . , xn) ∈ Sn : ∀i ≤ n− 1 (xi = xi+1 ⇒ xi 6= 0)}.

Prove that |An+1 = 3.|Bn|. (|A| denotes the number of elements of the

set A.)

Problem 3. Let f : R → [0,∞) be a continuously differentiable func-

tion. Prove that∣∣∣ 1∫
0

f 3(x)dx− f 2(0)

1∫
0

f(x)dx
∣∣∣ ≤ max

0≤x≤1
|f ′(x)|

( 1∫
0

f(x)dx
)2
.

Problem 4. Find all polynomials P (x) = anx
n+an−1xn−1 + · · ·+a1x+

a0 (an 6= 0) satisfying the following two conditions:

(i) (a0, a1, . . . , an) is a permutation of the numbers (0, 1, ..., n)

and

(ii) all roots of P (x) are rational numbers.

Problem 5. Let f : (0,∞) → R be a twice continuously differentiable

function such that

|f ′′(x) + 2xf ′(x) + (x2 + 1)f(x)| ≤ 1

for all x. Prove that lim
x→∞

f(x) = 0.

Problem 6. Given a group G, denote by G(m) the subgroup generated

by the mth powers of elements of G. If G(m) and G(n) are commutative,

prove that G(gcd(m,n)) is also commutative. (gcd(m,n) denotes the

greatest common divisor of m and n.)

1.12.2 Day 2, 2005

Problem 1. Let f(x) = x2 + bx + c, where b and c are real numbers,

and let

M = {x ∈ R : |f(x)| < 1}.

Clearly the set M is either empty or consists of disjoint open intervals.

Denote the sum of their lengths by |M |. Prove that

|M | ≤ 2
√

2.
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Problem 2. Let f : R → R be a function such that (f(x))n is a

polynomial for every n = 2, 3, . . .. Does it follow that f is a polynomial?

Problem 3. In the linear space of all real n × n matrices, find the

maximum possible dimension of a linear subs pace V such that

∀X, Y ∈ V trace(XY ) = 0.

(The trace of a matrix is the sum of the diagonal entries.)

Problem 4. Prove that if f : R→ R is three times differentiable, then

there exists a real number ξ ∈ (−1, 1) such that

f ′′′(ξ)

6
=
f(1)− f(−1)

2
− f ′(0).

Problem 5. Find all r > 0 such that whenever f : R→ R is a differen-

tiable function such that |grad f(0, 0)| = 1 and |grad f(u)−grad f(v)| ≤
|u − v| for all u, v ∈ R2, then the maximum of f on the disk {u ∈ R2 :

|u| ≤ r} is attained at exactly one point. (grad f(u) = (∂1f(u), ∂2f(u))

is the gradient vector of f at the point u. For a vector u = (a, b), |u| =√
a2 + b2.)

Problem 6. Prove that if p and q are rational numbers and r = p+q
√

7,

then there exists a matrix
(
a b
c d

)
6= ±

(
1 0
0 1

)
with integer entries and

with ad− bc = 1 such that

ar + b

cr + d
= r.

1.13 Olympic 2006

1.13.1 Day 1, 2006

Problem 1. Let f : R → R be a real function. Prove or disprove each

of the following statements.

a) If f is continuous and range(f) = R then f is monotonic.

b) If f is monotonic and range(f) = R then f is continuous.

c) If f is monotonic and f is continuous then range(f) = R.

(20 points)
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Problem 2. Find the number of positive integers x satisfying the fol-

lowing two conditions:

1. x < 102006;

2. x2 − x is divisible by 102006.

(20 points)

Problem 3. Let A be an n×n-matrix with integer entries and b1, . . . , bk

be integers satisfying detA = b1 . . . bk. Prove that there exist n × n-

matrices B1, . . . , Bk with integer entries such that A = B1 . . . Bk and

detBi = bi for all i = 1, . . . , k. (20 points)

Problem 4. Let f be a rational function (i.e. the quotient of two real

polynomials) and suppose that f(n) is an integer for infinitely many

integers n. Prove that f is a polynomial. (20 points)

Problem 5. Let a, b, c, d, e > 0 be real numbers such that a2 + b2 + c2 =

d2 + e2 and a4 + b4 + c4 = d4 + e4. Compare the numbers a3 + b3 + c3

and d3 + e3. (20 points)

Problem 6. Find all sequences a0, a1, . . . , an of real numbers where

n ≥ 1 and an 6= 0, for which the following statement is true:

If f : R→ R is an n times differentiable function and x0 < x1 < · · · <
xn are real numbers such that f(x0) = f(x1) = · · · = f(xn) = 0 then

there exists an h ∈ (x0, xn) for which

a0f(h) + a1f
′(h) + · · ·+ anf

(n)(h) = 0.

(20 points)

1.13.2 Day 2, 2006

Problem 1. Let V be a convex polygon with n vertices.

a) Prove that if n is divisible by 3 then V can be triangulated (i.e.

dissected into non-overlapping triangles whose vertices are vertices of V )

so that each vertex of V is the vertex of an odd number of triangles.
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b) Prove that if n is not divisible by 3 then V can be triangulated

so that there are exactly two vertices that are the vertices of an even

number of the triangles.

(20 points)

Problem 2. Find all functions f : R → R such that for any real

numbers a < b, the image f([a, b]) is a closed interval of length b− a.

(20 points)

Problem 3. Compare tan(sinx) and sin(tanx) for all x ∈ (0, π2 ).

(20 points)

Problem 4. Let v0 be the zero vector in Rn and let v1, v2, . . . , vn+1 ∈ Rn

be such that the Euclidean norm |vi− vj| is rational for every 0 ≤ i, j ≤
n+ 1. Prove that v1, . . . , vn+1 are linearly dependent over the rationals.

(20 points)

Problem 5. Prove that there exists an infinite number of relatively

prime pairs (m,n) of positive integers such that the equation

(x+m)3 = nx

has three distinct integer roots.

(20 points)

Problem 6. Let Ai, Bi, Si(i = 1, 2, 3) be invertible real 2 × 2 matrices

such that

1) not all Ai have a common real eigenvector;

2) Ai = S−1
i BiSi for all i = 1, 2, 3;

3) A1A2A3 = B1B2B3 =
(

1 0
0 1

)
.

Prove that there is an invertible real 2 × 2 matrix S such that Ai =

S−1BiS for all i = 1, 2, 3.

(20 points)
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1.14 Olympic 2007

1.14.1 Day 1, 2007

Problem 1. Let f be a polynomial of degree 2 with integer coefficients.

Suppose that f(k) is divisible by 5 for every integer k. Prove that all

coefficients of f are divisible by 5.

Problem 2. Let n > 2 be an integer. What is the minimal and maximal

possible rank of an n × n matrix whose n2 entries are precisely the

numbers 1, 2, . . . , n2?

Problem 3. Call a polynomial P (x1, . . . , xk) good if there exist 2 × 2

real matrices A1, . . . , Ak such that

P (x1, . . . , xk) = det

(
k∑
i=1

xiAi

)
.

Find all values of k for which all homogeneous polynomials with k vari-

ables of degree 2 are good.

(A polynomial is homogeneous if each term has the same total degree.)

Problem 4. Let G be a finite group. For arbitrary sets U, V,W ⊂ G,

denote by NUVW the number of triples (x, y, z) ∈ U × V ×W for which

xyz is the unity.

Suppose that G is partitioned into three sets A,B and C (i.e. sets

A,B,C are pairwise disjoint and G = A ∪ B ∪ C). Prove that NABC =

NCBA.

Problem 5. Let n be a positive integer and a1, . . . , an be arbitrary

integers. Suppose that a function f : Z → R satisfies
n∑
i=1

f(k + ail) = 0

whenever k and l are integers and l 6= 0. Prove that f = 0.

Problem 6. How many nonzero coefficients can a polynomial P (z) have

if its coefficients are integers and |P (z) 6 2| for any complex number z

of unit length?
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1.14.2 Day 2, 2007

Problem 1. Let f : R→ R be a continuous function. Suppose that for

any c > 0, the graph of f can be moved to the graph of cf using only a

translation or a rotation. Does this imply that f(x) = ax + b for some

real numbers a and b?

Problem 2. Let x, y and z be integers such that S = x4 + y4 + z4 is

divisible by 29. Show that S divisible by 294.

Problem 3. Let C be a nonempty closed bounded subset of the real

line and f : C → C be a nondecreasing continuous function. Show that

there exists a point p ∈ C such that f(p) = p.

(A set is closed if its complement is a union of open intervals. A

function g is nondecreasing if g(x) 6 g(y) for all x 6 y.)

Problem 4. Let n > 1 be an odd positive integer and A = (aij)i,j=1,...,n

be the n× n matrix with

aij =

2 if i = j
1 if i− j ≡ ±2 (mod n)
0 otherwise.

Find detA.

Problem 6. Let f 6= 0 be a polynomial with real coefficients. Define

the sequence f0, f1, f2, . . . of polynomials by f0 = f and fn+1 = fn + f ′n
for every n > 0. Prove that there exists a number N such that for every

n > N , all roots of fn are real.

1.15 Olympic 2008

1.15.1 Day 1, 2008

Problem 1. Find all continuous functions f : R→ R such that f(x)−
f(y) is rational for all reals x and y such that x− y is rational.

Problem 2. Denote by V the real vector space of all real polynomials

in one variable, and let P : V → R be a linear map. Suppose that for
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all f, g ∈ V with P (fg) = 0 we have P (f) = 0 or P (g) = 0. Prove that

there exist real numbers x0, c such that P (f) = cf(x0) for all f ∈ V .

Problem 3. Let p be a polynomial with integer coefficients and let

a1 < a2 < · · · < ak be integers.

a) Prove that there exists a ∈ Z such that p(ai) divides p(a) for all

i = 1, 2, . . . , k.

b) Does there exist an a ∈ Z such that the product p(a1).p(a2) . . . p(ak)

divides p(a)?

Problem 4. We say a triple (a1, a2, a3) of nonnegative reals is better

than another triple (b1, b2, b3) if two out of the three following inequalities

a1 > b1, a2 > b2, a3 > b3 are satisfied. We call a triple (x, y, z) special if

x, y, z are nonnegative and x+y+z = 1. Find all natural numbers n for

which there is a set S of n special triples such that for any given special

triple we can find at least one better triple in S.

Problem 5. Does there exist a finite group G with a normal subgroup

H such that |Aut H| > |Aut G|?
Problem 6. For a permutation σ = (i1, i2, . . . , in) of (1, 2, . . . , n) define

D(σ) =
n∑
k=1
|ik − k|. Let Q(n, d) be the number of permutations σ of

(1, 2, . . . , n) with d = D(σ). Prove that Q(n, d) is even for d > 2n.

1.15.2 Day 2, 2008

Problem 1. Let n, k be positive integers and suppose that the polyno-

mial x2k − xk + 1 divides x2n + xn + 1. Prove that x2k + xk + 1 divides

x2n + xn + 1.

Problem 2. Two different ellipses are given. One focus of the first

ellipse coincides with one focus of the second ellipse. Prove that the

ellipses have at most two points in common.

Problem 3. Let n be a positive integer. Prove that 2n−1 divides∑
06k<n

2

(
n

2k + 1

)
5k.
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Problem 4. Let Z[x] be the ring of polynomials with integer coefficients,

and let f(x), g(x) ∈ Z[x] be nonconstant polynomials such that g(x)

divides f(x) in Z[x]. Prove that if the polynomial f(x) − 2008 has at

least 81 distinct integer roots, then the degree of g(x) is greater than 5.

Problem 5. Let n be a posotive integer, and consider the matrix A =

(aij)16i,j6n, where

aij =

{
1 if i+ j is a prime number,
0 otherwise.

Prove that | detA| = k2 for some integer k.

Problem 6. Let H be an infinite-dimensional real Hilbert space, let

d > 0, and suppose that S is a set of points (not necessarily countable)

in H such that the distance between any two distinct points in S is equal

to d. Show that there is a point y ∈ H such that{√2

d
(x− y) : x ∈ S

}
is an orthonormal system of vectors in H.



Chapter 2

Solutions

2.1 Solutions of Olympic 1994

2.1.1 Day 1

Problem 1.

Denote by aij and bij the elements of A and A−1, respectively. Then

for k 6= m we have
n∑
i=0

akibim = 0 and from the positivity of aij we

conclude that at least one of {bim : 1, 2, . . . , n} is positive and at least

one is negative. Hence we have at least two non-zero elements in every

column of A−1. This proves part a). For part b) all bij are zero except

b1,1 = 2, bn,n = (−1)n, bi,i+1 = bi+1,i = (−1)i for i = 1, 2, . . . , n− 1.

Problem 2. From the inequality we get

d

dx
(tan−1 f(x) + x) =

f ′(x)

1 + f 2(x)
+ 1 ≥ 0

for x ∈ (a, b). Thus tan−1 f(x) + x is non-decreasing in the interval and

using the limits we get
π

2
+ a ≤ −π

2
+ b. Hence b − a ≥ pi. One has

equality for f(x) = cotgx, a = 0, b = π.

Problem 3. Let I be the set of irrational numbers, Q-the set of rational

numbers, Q+ = Q ∪ [0,∞). We work by induction. For n = 1 the

statement is trivial. Let it be true for n − 1. We start to prove it

for n. From the induction argument there are n − 1 different elements

x1, x2, . . . , xn−1 ∈ S such that

a1x1 + a2x2 + · · ·+ an−1xn−1 ∈ I
forall a1, a2, . . . , an ∈ Q+ with a1 + a2 + · · ·+ an−1 > 0 (1)

44
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Denote the other elements of S by xn, xn+1, . . . , x2n−1. Assume the state-

ment is not true for n. Then for k = 0, 1, . . . , n − 1 there are rk ∈ Q
such that

n−1∑
i=1

bikxi + ckxn+k = rk for some bik, ck ∈ Q+,
n−1∑
i=1

bik + ck > 0. (2)

Also
n−1∑
k=0

dkxn+k = R for some dk ∈ Q+,
n−1∑
k=0

dk > 0, R ∈ Q. (3)

If in (2) ck = 0 then (2)contradicts (1). Thus ck 6= 0 and without loss

of generality one may take ck = 1. In (2) also
n−1∑
i=1

bik > 0 in view of

xn+k ∈ I. Replacing (2) in (3) we get

n−1∑
k=0

dk

(
−

n−1∑
i=1

bikxi + rk

)
= R or

n−1∑
i=1

( n−1∑
k=0

dkbik

)
xi ∈ Q,

which contradicts (1) because of the condition on b′s and d′s.

Problem 4. For a) using the assumptions we have

F k ◦G−G ◦ F k =
k∑
i=1

(F k−i+1 ◦G ◦ F i−1 − F k−i ◦G ◦ F i) =

=
k∑
i=1

F k−i ◦ (F ◦G−G ◦ F ) ◦ F i−1 =

=
k∑
i=1

F k−i ◦ αF ◦ F i−1 = αkF k.

b) Consider the linear operator L(F ) = F ◦G−G◦F acting over all n×n
matrices F . It may have at most n2 different eigenvalues. Assuming that

F k 6= 0 for every k we get that L has infinitely many different eigenvalues

αk in view of a) -a contradiction.

Problem 5. Set ‖ g ‖1=
b∫
0
|g(x)|dx and

ω(f, t) = sup{|f(x)− f(y)| : x, y ∈ [0, b], |x− y| ≤ t}.
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In view of the uniform continuity of f we have ω(f, t) → 0 as t → 0.

Using the periodicity of g we get

b∫
0

f(x)g(nx)dx =
n∑
k=1

bk/n∫
b(k−1)/n

f(x)g(nx)dx

=
n∑
k=1

f(bk/n)

bk/n∫
b(k−1)/n

g(nx)dx+
n∑
k=1

bk/n∫
b(k−1)/n

{f(x)− f(bk/n)}g(nx)dx

=
1

n

n∑
k=1

f(bk/n)

b∫
0

g(x)dx+O(ω(f, b/n) ‖ g ‖1)

=
1

n

n∑
k=1

bk/n∫
b(k−1)/n

f(x)dx

b∫
0

g(x)dx

+
1

b

n∑
k=1

( b
n
f(bk/n)−

bk/n∫
b(k−1)/n

f(x)dx
) b∫

0

g(x)dx+O(ω(f, b/n) ‖ g ‖1)

=
1

b

b∫
0

f(x)dx

b∫
0

g(x)dx+O(ω(f, b/n) ‖ g ‖1).

This proves a). For b) we set b = π, f(x) = sinx, g(x) = (1+3 cos2 x)−1.

From a) and

π∫
0

sinxdx = 2,

π∫
0

(1 + 3 cos2 x)−1dx =
π

2

we get

lim
n→∞

π∫
0

sinx

1 + 3 cos2 nx
dx = 1.

Problem 6. a) For i = 1, 2, . . . , k we have

bi = f(mi)− f(mi−1) = (mi −mi−1)f
′(xi)
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for some xi ∈ (mi−1,mi). Hence
bi
ai

= f ′(xi) and so −1 <
bi
ai

< 1.

From the convexity of f we have that f ′ is increasing and
bi
ai

= f ′(xi) <

f ′(xi+1) =
bi+1

ai+1
because of xi < mi < xi+1.

b) Set SA = {j ∈ {0, 1, . . . , k} : aj > A}. Then

N ≥ mk −m0 =
k∑
i=1

ai ≥
∑
j∈SA

aj > A|SA|

and hence |SA <
N

A
.

c) All different fractions in (−1, 1) with denominators less or equal A

are no more 2A2. Using b) we get k <
N

A
+ 2A2. Put A = N 1/3 in the

above estimate and get k < 3N 2/3.

2.1.2 Day 2

Problem 1. Assume that there is y ∈ (a, b] such that f(y) 6= 0. Without

loss of generality we have f(y) > 0. In view of the continuity of f there

exists c ∈ [a, y) such that f(c) = 0 and f(x) > 0 for x ∈ (c, y]. For

x ∈ (c, y] we have |f ′(x)| ≤ λf(x). This implies that the function g(x) =

ln f(x)− λx is not increasing in (c, y] because of g′(x) =
f ′(x)

f(x)
− λ ≤ 0.

Thus ln f(x) − λx ≥ ln f(y) − λy and f(x) ≥ eλx−λyf(y) for x ∈ (c, y].

Thus

0 = f(c) = f(c+ 0) ≥ eλc−λyf(y) > 0

Problem 2. We have f(1, 0) = e−1, f(0, 1) = −e−1 and te−t ≤ 2e−2

for t ≥ 2. Therefore |f(x, y)| ≤ (x2 + y2)e−x
2−y2 ≤ 2e−2 < e−1 for

(x, y) 6= M = {(u, v) : u2 + v2 ≤ 2} and f cannot attain its minimum

and its maximum outside M . Part a) follows from the compactness of

M and the continuity of f . Let (x, y) be a point from part b). From
∂f

∂x
(x, y) = 2x(1− x2 + y2)e−x

2−y2

we get

x(1− x2 + y2) = 0. (1)
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Similarly

y(1 + x2 − y2) = 0. (2)

All solutions (x, y) of the system (1), (2) are (0, 0), (0, 1), (0,−1), (1, 0)

and (−1, 0). One has f(1, 0) = f(−1, 0) = e−1 and f has global maxi-

mum at the points (1, 0) and (−1, 0). One has f(0, 1) = f(0,−1) = −e−1

and f has global minimum at the points (0, 1) and (0,−1). The point

(0, 0) is not an extrema point because of f(x, 0) = x2e−x
2

> 0 if x 6= 0

and f(y, 0) = −y2e−y
2

< 0 if y 6= 0.

Problem 3. Set g(x) = (f(x) + f ′(x) + · · · + f (n)(x))e−x. From the

assumption one get g(a) = g(b). Then there exists c ∈ (a, b) such that

g′(c) = 0. Replacing in the last equality g′(x) = (f (n+1)(x) − f(x))e−x

we finish the proof.

Problem 4. Set A = (aij)
n
i,j=1, B = (bij)

n
i,j=1, AB = (xij)

n
i,j=1 and

BA = (yij)
n
i,j=1. Then xij = aiibij and yij = ajjbij. Thus AB = BA

is equivalent to (aii − ajj)bij for i, j = 1, 2, . . . , n. Therefore bij = 0 if

aii 6= ajj and bij may be arbitrary if aii = ajj. The number of indices

(i, j) for which aii = ajj = cm for some m = 1, 2, . . . , k is d2
m. This gives

the desired result.

Problem 5. We define π inductively. Set π(1) = 1. Assume π is defined

for i = 1, 2, . . . , n and also

‖
n∑
i=1

xπ(i) ‖2≤
n∑
i=1

‖ xπ(i) ‖2 . (1)

Note (1) is true for n = 1. We choose π(n+1) in a way that (1) is fulfilled

with n+1 instead of n. Set y =
n∑
i=1

xπ(i) and A = {1, 2, . . . , k}\{π(i) : i =

1, 2, . . . , n}. Assume that (y, xr) > 0 for all r ∈ A. Then
(
y,
∑
r∈A

xr

)
> 0

and in view of y +
∑
r∈A

xr = 0 one gets −(y, y) > 0, which is impossible.

Therefore there is r ∈ A such that

(y, xr) ≤ 0. (2)
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Put π(n+ 1) = r. Then using (2) and (1) we have

‖
n+1∑
i=1

xπ(i) ‖2=‖ y+xr ‖2=‖ y ‖2 +2(y, xr)+ ‖ xr ‖2≤‖ y ‖2 + ‖ xr ‖2≤

≤
n∑
i=1

‖ xπ(i) ‖2 + ‖ xr ‖2=
n+1∑
i=1

‖ xπ(i) ‖2,

which verifies (1) for n + 1. Thus we define π for every n = 1, 2, . . . , k.

Finally from (1) we get

‖
n∑
i=1

xπ(i) ‖2≤
n∑
i=1

‖ xπ(i) ‖2≤
k∑
i=1

‖ xi ‖2 .

Problem 6. Obviously

AN =
ln 2N

N

N−2∑
k=2

1

ln k.ln (N − k)
≥ ln 2N

N
.
N − 3

ln 2N
= 1− 3

N
. (1)

Take M, 2 ≤ M <
N

2
. Then using that

1

ln k.ln (N − k)
is decreasing in

[2, N2 ] and the symmetry with respect to N
2 one get

AN =
ln 2N

N

{ M∑
k=2

+
N−M−1∑
k=M+1

+
∑

k=N−M

N − 2
} 1

ln k.ln (N − k)
≤

≤ ln 2N

N

(
2

M − 1

ln 2.ln (N − 2)
+

N − 2M − 1

lnM.ln (N −M)

}
≤

≤ 2

ln 2
.
M lnN

N
+
(

1− 2M

N

) lnN

lnM
+O

( 1

lnN

)
Choose M =

[ N

ln 2N

]
+ 1 to get

AN ≤
(

1− 2

N ln 2N

) lnN

lnN − 2ln lnN
+O

( 1

lnN

)
≤ 1+O

( ln lnN

lnN

)
. (2)

Estimates (1) and (2) give

lim
N→∞

ln 2N

N

N−2∑
k=2

1

ln k.ln (N − k)
= 1.
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2.2 Solutions of Olympic 1995

2.2.1 Day 1

Problem 1. Let J = (aij) be the n×n matrix where aij = 1 if i = j+1

and aij = 0 otherwise. The rank of J is n−1 and its only eigenvalues are

0’s. Moreover Y = XJ and A = Y X−1 = XJX−l, B = X−1Y = J . It

follows that both A and B have rank n− 1 with only 0’s for eigenvalues.

Problem 2. From the inequality

0 ≤
1∫

0

(f(x)− x)2dx =

1∫
0

f 2(x)dx− 2

1∫
0

xf(x)dx+

1∫
0

x2dx

we get

1∫
0

f 2(x)dx ≥ 2

1∫
0

xf(x)dx−
1∫

0

x2dx = 2

1∫
0

xf(x)dx− 1

3
.

From the hypotheses we have
1∫
0

1∫
x

f(t)dtdx ≥
1∫
0

1− x2

2
dx or

1∫
0
tf(t)dt ≥

1

3
. This completes the proof.

Problem 3. Since f ′ tends to −∞ and f” tends to +∞ as x tends to

0+, there exists an interval (0, r) such that f ′(x) < 0 and f”(x) > 0 for

all x ∈ (0, r). Hence f is decreasing and f ′ is increasing on (0, r). By

the mean value theorem for every 0 < x < x0 < r we obtain

f(x)− f(x0) = f ′(ξ)(x− x0) > 0,

for some ξ ∈ (x, x0). Taking into account that f ′ is increasing, f ′(x) <

f ′(ξ) < 0, we get

x− x0 <
f ′(ξ)

f ′(x)
(x− x0) =

f(x)− f(x0)

f ′(x)
< 0.

Taking limits as x tends to 0+ we obtain

−x0 ≤ lim
x→0+

inf
f(x)

f ′(x)
≤ lim

x→0+
sup

f(x)

f ′(x)
≤ 0.
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Since this happens for all x0 ∈ (0, r) we deduce that limx→0+
f(x)

f ′(x)
exists

and limx→0+
f(x)

f ′(x)
= 0.

Problem 4. From the definition we have

F ′(x) =
x− 1

lnx
, x > 1.

Therefore F ′(x) > 0 for x ∈ (1,∞). Thus F is strictly increasing and

hence one-to-one. Since

F (x) ≥ (x2 − x) min{ 1

ln t
: x ≤ t ≤ x2} =

x2 − x
lnx2 →∞

as x → ∞, it follows that the range of F is (F (1+),∞). In order to

determine F (l+) we substitute t = ev in the definition of F and we get

F (x) =

2ln x∫
ln x

ev

v
dv.

Hence

F (x) < e2lnx

2ln x∫
ln x

1

v
dv = x2ln2

and similarly F (x) > x

ln2. Thus F (1+) = ln 2.

Problem 5. We have that

(A+ tB)n = An + tP1 + t2P2 + · · ·+ tn−1Pn−1 + tnBn

for some matrices P1, P2, . . . , Pn−l not depending on t.

Assume that a, p1, p2, . . . , pn−1, b are the (i, j)-th entries of the corre-

sponding matrices An, P1, P2, . . . , Pn−1, B
n. Then the polynomial

btn + pn−1t
n−1 + · · ·+ p2t

2 + p1t+ a

has at least n + 1 roots t1, t2, . . . , tn+1. Hence all its coefficients vanish.

Therefore An = 0, Bn = 0, Pi = 0; and A and B are nilpotent.
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Problem 6. Let 0 < δ < 1. First we show that there exists Kp,δ > 0

such that

f(x, y) =
(x− y)2

4− (x+ y)2 ≤ Kp,δ

for every (x, y) ∈ Dδ = {(x, y) : |x− y| ≥ δ, |x|p + |y|p = 2}.
Since Dδ is compact it is enough to show that f is continuous on

Dδ. For this we show that the denominator of f is different from zero.

Assume the contrary. Then |x + y| = 2 and
∣∣∣x+ y

2

∣∣∣p = 1. Since p > 1,

the function g(t) = |t|p is strictly convex, in other words
∣∣∣x+ y

2

∣∣∣p <
|x|p + |y|p

2
whenever x 6= y. So for some (x, y) ∈ Dδ we have

∣∣∣x+ y

2

∣∣∣p <
|x|p + |y|p

2
= 1 =

∣∣∣x+ y

2

∣∣∣p. We get a contradiction.

If x and y have different signs then (x, y) ∈ Dδ for all 0 < δ < 1

because then |x−y| ≥ max{|x|, |y|} ≥ 1 > δ. So we may further assume

without loss of generality that x > 0, y > 0 and xp+yp = 2. Set x = 1+t.

Then

y = (2− xp)1/p = (2− (1 + t)p)1/p

=
(

2− (1 + pt+
p(p− 1)

2
t2 + o(t2))

)1/p
= (1− pt− p(p− 1)

2
t2 + o(t2))1/p

=1 +
1

p

(
− pt− p(p− 1)

2
t2 + o(t2)

)
+

1

2p

(1

p
− 1
)

(−pt+ o(t2))2 + o(t2)

=1− t− p− 1

2
t2 + o(t2)− p− 1

2
t2 + o(t2)

=1− t− (p− 1)t2 + o(t2).

We have

(x− y)2 = (2t+ o(t))2 = 4t2 + o(t2)

and

4− (x+ y)2 = 4− (2− (p− 1)t2 + o(t2))2

= 4− 4 + 4(p− 1)t2 + o(t2) = 4(p− 1)t2 + o(t2).

So there exists δp > 0 such that if |t| < δp we have (x − y)2 < 5t2, 4 −
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(x+ y)2 > 3(p− 1)t2. Then

(x− y)2 < 5t2 =
5

3(p− 1)
.3(p− 1)t2 <

5

3(p− 1)
(4− (x+ y)2) (*)

if |x − 1| < δp. From the symmetry we have that (*) also holds when

|y − 1| < δp.

To finish the proof it is enough to show that |x − y| ≥ 2δp whenever

|x−1| ≥ δp, |y−1| ≥ δp and xp+yp = 2. Indeed, since xp+yp = 2 we have

that max{x, y} ≥ 1. So let x − 1 ≥ δp. Since
(x+ y

2

)p
≤ xp + yp

2
= 1

we get x+ y ≤ 2. Then x− y ≥ 2(x− 1) ≥ 2δp.

2.2.2 Day 2

Problem 1. a) Set A = (aij), u = (u1, u2, u3)
T . If we use the orthogo-

nallity condition

(Au, u) = 0 (1)

with ui = δik we get akk = 0. If we use (1) with ui = δik + δim we get

akk + akm + amk + amm = 0

and hence akm = −amk.
b) Set v1 = −a23, v2 = a13, v3 = −a12. Then

Au = (v2u3 − v3u2, v3u1 − v1u3, v1u2 − v2u1)
T = v × u.

Problem 2. (15 points)

Let {bn}∞n=0 be a sequence of positive real numbers such that b0 =

1, bn = 2 +
√
bn−1 − 2

√
1 +
√
bn−1. Calculate

∞∑
n=1

bn2
n.

Solution. Put an = 1 +
√
bn for n ≥ 0. Then an > 1, a0 = 2 and

an = 1 +
√

1 + an−1 − 2
√
an−1 =

√
an−1,
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so an = 22−n. Then

N∑
n=1

bn2
n =

N∑
n=1

(an − 1)22n =
N∑
n=1

[a2
n2

n − an2n+1 + 2n]

=
N∑
n=1

[(an−1 − 1)2n − (an − 1)2n+1]

= (a0 − 1)21 − (aN − 1)2N+1 = 2− 2
22−N − 1

2−N
.

Put x = 2−N . Then x→ 0 as N →∞ and so
∞∑
n=1

bn2
N = lim

N→∞

(
2− 2

22−N − 1

2−N

)
= lim

x→0

(
2− 2

2x − 1

x

)
= 2− 2ln2.

Problem 3. It is enough to consider only polynomials with leading

coefficient 1. Let P (z) = (z − α1)(z − α2) . . . (z − αn) with |αj| = 1,

where the complex numbers α1, α2, . . . , αn may coincide.

We have

P̃ (z) ≡ 2zP ′(z)− nP (z) = (z + α1)(z − α2) . . . (z − αn)+
+ (z − α1)(z + α2) . . . (z − αn) + . . .+ (z − α1)(z − α2) . . . (z + αn).

Hence,
P̃ (z)

P (z)
=

n∑
k=1

z + αk
z − αk

. Since Re
z + α

z − α
=
|z|2 − |α|2

|z − α|2
for all complex

z, α, z 6= α, we deduce that in our case Re
P̃ (z)

P (z)
=

n∑
k=1

|z|2 − 1

|z − αk|2
. From

|z| 6= 1 it follows that Re
P̃ (z)

P (z)
6= 0. Hence P̃ (z) = 0 implies |z| = 1.

Problem 4. a) Let n be such that (1− ε2)n ≤ ε. Then |x(1− x2)n < ε

for every x ∈ [−1, 1]. Thus one can set λk = (−1)k+1
(
n
k

)
because then

x−
n∑
k=1

λkx
2k+1 =

n∑
k=0

(−1)k
(
n

k

)
x2k+1 = x(1− x2)n.

b) From the Weierstrass theorem there is a polynomial, say p ∈
∏

m

such that

max
x∈[−1,1]

|f(x)− p(x)| < ε

2
.



2.2. Solutions of Olympic 1995 55

Set q(x) =
1

2
{p(x)− p(−x)}. Then

f(x)− q(x) =
1

2
{f(x)− p(x)} − 1

2
{f(−x)− p(−x)}

and

max
|x|≤1
|f(x)− q(x)| ≤ 1

2
max
|x|≤1
|f(x)− p(x)|+ 1

2
max
|x|≤1
|f(−x)− p(−x)| < ε

2
.

(1)

But q is an odd polynomial in
∏

m and it can be written as

q(x) =
m∑
k=0

bkx
2k+1 = b0x+

m∑
k=1

bkx
2k+1.

If b0 = 0 then (1) proves b). If b0 6= 0 then one applies a) with
ε

2|b0|
of ε to get

max
|x|≤1

∣∣∣b0x− n∑
k=1

b0λkx
2k+1

∣∣∣ < ε

2
(2)

for appropriate n and λ1, λ2, . . . , λn. Now b) follows from (1) and (2)

with max{n,m} instead of n.

Problem 5. a) Let us consider the integral

2π∫
0

f(x)(1± cosx)dx = π(a0 ± 1).

The assumption that f(x) ≥ 0 implies a0 ≥ 1. Similarly, if f(x) ≤ 0

then a0 ≤ −1. In both cases we have a contradiction with the hypothesis

of the problem.

b) We shall prove that for each integer N and for each real number

h ≥ 24 and each real number y the function

FN(x) =
N∑
n=1

cos(xn
3
2 )

changes sign in the interval (y, y+ h). The assertion will follow immedi-

ately from here.
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Consider the integrals

I1 =

y+h∫
y

FN(x)dx, I2 =

y+h∫
y

FN(x) cosxdx.

If FN(x) does not change sign in (y, y + h) then we have

|I2| ≤
y+h∫
y

|FN(x)|dx =
∣∣∣ y+h∫
y

FN(x)dx
∣∣∣ = |I1|.

Hence,it is enough to prove that

|I2| > |I1|.

Obviously, for each α 6= 0 we have

∣∣∣ y+h∫
y

cos(αx)dx
∣∣∣ ≤ 2

|α|
.

Hence

|I1| =
∣∣∣ N∑
n=1

y+h∫
y

cos(xn
3
2dx
∣∣∣ ≤ 2

N∑
n=1

1

n
3
2

< 2
(

1 +

∞∫
1

dt

t
3
2

)
= 6. (1)

On the other hand we have

I2 =
N∑
n=1

y+h∫
y

cosx cos(xn
3
2 )dx

=
1

2

y+h∫
y

(1 + cos(2x))dx+

+
1

2

N∑
n=2

y+h∫
y

(cos(x(n
3
2 − 1)) + cos(x(n

3
2 + 1)))dx

=
1

2
h+4,
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where

|4| ≤ 1

2

(
1 + 2

N∑
n=2

( 1

n
3
2 − 1

+
1

n
3
2 + 1

))
≤ 1

2
+ 2

N∑
n=2

1

n
3
2 − 1

.

We use that n
3
2 − 1 ≥ 2

3
n

3
2 for n ≥ 3 and we get

|4| ≤ 1

2
+

2

2
3
2 − 1

+ 3
N∑
n=3

1

n
3
2

<
1

2
+

2

2
√

2− 1
+ 3

∞∫
2

dt

t
3
2

< 6.

Hence

|I2| >
1

2
h− 6. (2)

We use that h ≥ 24 and inequalities (1), (2) and we obtain |I2| > |I1|.
The proof is completed.

Problem 6. It is clear that one can add some functions, say {gm},
which satisfy the hypothesis of the problem and the closure of the finite

linear combinations of {fn} ∪ {gm} is L2[0, 1]. Therefore without loss of

generality we assume that {fn} generates L2[0, 1].

Let us suppose that there is a subsequence {nk} and a function f such

that

fnk(x) →
k→∞

f(x) for every x ∈ [0, 1].

Fix m ∈ N. From Lebesgue’s theorem we have

0 =

1∫
0

fm(x)fnk(x)dx →
k→∞

1∫
0

fm(x)f(x)dx.

Hence
1∫
0
fm(x)f(x)dx = 0 for every m ∈ N, which implies f(x) = 0

almost everywhere. Using once more Lebesgue’s theorem we get

1 =

1∫
0

f 2
nk

(x)dx →
k→∞

1∫
0

f 2(x)dx = 0.

The contradiction proves the statement.
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2.3 Solutions of Olympic 1996

2.3.1 Day 1

Problem 1. Adding the first column of A to the last column we get

that

det(A) = (a0 + an)det


a0 a1 a2 . . . 1
a1 a0 a1 . . . 1
a2 a1 a0 . . . 1
. . . . . . . . . . . . . . . . . . . . .
an an−1 an−2 . . . 1


Subtracting the n-th row of the above matrix from the (n + 1)-st one,

(n− 1)-st from n-th,. . ., first from second we obtain that

det(A) = (a0 + an)det


a0 a1 a2 . . . 1
d −d −d . . . 0
d d −d . . . 0
. . . . . . . . . . . . . . . . . .
d d d . . . 0


Hence,

det(A) = (−1)n(a0 + an)det


d −d −d . . . −d
d d −d . . . −d
d d d . . . −d
. . . . . . . . . . . . . . . . . . .
d d d . . . d


Adding the last row of the above matrix to the other rows we have

det(A) = (−1)n(a0+an)det


2d 0 0 . . . 0
2d 2d 0 . . . 0
2d 2d 2d . . . 0
. . . . . . . . . . . . . . . . .
d d d . . . d

 = (−1)n(a0+an)2
n−1dn.

Problem 2. We have

In =

π∫
−π

sinnx

(1 + 2x) sinx
dx

=

π∫
0

sinnx

(1 + 2x) sinx
dx+

0∫
−π

sinnx

(1 + 2x) sinx
dx.
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In the second integral we make the change of variable x = −x and obtain

In =

π∫
0

sinnx

(1 + 2x) sinx
dx+

π∫
0

sinnx

(1 + 2−x) sinx
dx

=

π∫
0

(1 + 2x) sinnx

(1 + 2x) sinx
dx

=

π∫
0

sinnx

sinx
dx.

For n ≥ 2 we have

In − In−2 =

π∫
0

sinnx− sin(n− 2)x

sinx
dx

= 2

π∫
0

cos(n− 1)xdx = 0.

The answer

In =

{
0 if n is even,
π if n is odd

follows from the above formula and I0 = 0, I1 = π.

Problem 3.

(i) Let B =
1

2
(A+ E). Then

B2 =
1

4
(A2 + 2AE + E) =

1

4
(2AE + 2E) =

1

2
(A+ E) = B.

Hence B is a projection. Thus there exists a basis of eigenvectors for B,

and the matrix of B in this basis is of the form diag(1, . . . , 1, 0 . . . , 0).

Since A = 2B − E the eigenvalues of A are ±1 only.

(ii) Let {Ai : i ∈ I} be a set of commuting diagonalizable operators

on V , and let A1 be one of these operators. Choose an eigenvalue λ of

A1 and denote Vλ = {v ∈ V : A1v = λv}. Then Vλ is a subspace of

V , and since A1Ai = AiA1 for each i ∈ I we obtain that Vλ is invariant

under each Ai. If Vλ = V then A1 is either E or −E, and we can start
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with another operator Ai. If Vλ 6= V we proceed by induction on dimV

in order to find a common eigenvector for all Ai. Therefore {Ai : i ∈ I}
are simultaneously diagonalizable.

If they are involutions then |I| ≤ 2n since the diagonal entries may

equal 1 or −1 only.

Problem 4.

(i) We show by induction that

an ≤ qn for n ≥ 3, (*)

where q = 0.7 and use that 0.7 < 2−1/2. One has

a1 = 1, a2 =
1

2
, a3 =

1

3
, a4 =

11

48
.

Therefore (*) is true for n = 3 and n = 4. Assume (*) is true for

n ≤ N − 1 for some N ≥ 5. Then

αN =
2

N
aN−1 +

1

N
aN−2 +

1

N

N−3∑
k=3

akaN−k

≤ 2

N
qN−1 +

1

N
qN−2 +

N − 5

N
qN ≤ qN

because
2

q
+

1

q2 ≤ 5.

ii) We show by induction that

an ≥ qn for n ≥ 2,

where q =
2

3
. One has a2 =

1

2
>
(2

3

)2
= q2. Going by induction we

have for N ≥ 3.

aN =
2

N
aN−1 +

1

N

N−2∑
k=2

akaN−k ≥
2

N
qN−1 +

N − 2

N
qN = qN

because
2

q
= 3.

Problem 5. i) With a linear change of the variable (i) is equivalent to:
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(i) is proved.

ii) Denote In = n
1∫
0

(f(x))ndx and M = max
x∈[0,1]

f(x).

For M < 1 we have In ≤ nMn →
n→∞

0, a contradiction.

If M > 1 since f is continuous there exists an interval I ⊂ [0, 1] with

|I| > 0 such that f(x) > 1 for every x ∈ I. Then In ≥ n|I| →
n→∞

+∞,

a contradiction. Hence M = 1. Now we prove that f ′ has a constant

sign. Assume the opposite. Then f ′(x0) = 0 for some x ∈ (0, 1). Then

f(x0) = M = 1 because f ′′ ≤ 0. For x0 + h in [0, 1], f(x0 + h) = 1 +
h2

2
f ′′(ξ), ξ ∈ (x0, x0 +h). Let m = min

x∈[0,1]
f ′′(x). So, f(x0 +h) ≥ 1+

h2

2
m.

Let δ > 0 be such that 1 +
δ2

2
m > 0 and x0 + δ < 1. Then

In ≥ n

x0+δ∫
x0

(f(x))ndx ≥ n

δ∫
0

(
1 +

m

2
h2
)n
dh →

n→∞
∞

in view of (i’)-a contradiction. Hence f is monotone and M = f(0) or

M = f(1).

Let M = f(0) = 1. For h in [0, 1]

1 + hf ′(0) ≥ f(h) ≥ 1 + hf ′(0) +
m

2
h2,

where f ′(0) 6= 0, because otherwise we get a contradiction as above.

Since f(0) = M the function f is decreasing and hence f ′(0) < 0. Let

0 < A < 1 be such that 1 + Af ′(0) +
m

2
A2 > 0. Then

n

A∫
0

(1 + hf ′(0))ndh ≥ n

A∫
0

(f(x))ndx ≥ n

A∫
0

(1 + hf ′(0) +
m

2
h2)ndh.

From (i’) the first and the third integral tend to − 1

f ′(0)
as n → ∞,

hence so does the second.

Also n
1∫
A

(f(x))ndx ≤ n(f(A))n →
n→∞

0 (f(A) < 1). We ger L =

− 1

f ′(0)
in this case.
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If M = f(1) we get in a similar way L =
1

f ′(1)
.

Problem 6.

Hint. If E = T∪T ′ where T is the triangle with vertices (−2, 2), (2, 2)

and (0, 4), and T ′ is its reflexion about the x-axis, then C(E) = 8 >

K(E).

Remarks: All distances used in this problem are Euclidian. Di-

ameter of a set E is diam (E) = sup{dist (x, y) : x, y ∈ E}. Con-

traction of a set E to a set F is a mapping f : E 7→ F such that

dist (f(x), f(y)) ≤ dist (x, y) for all x, y ∈ E. A set E can be contracted

onto a set F if there is a contraction f of E to F which is onto, i.e., such

that f(E) = F . Triangle is defined as the union of the three segments

joining its vertices, i.e., it does not contain the interior.

Solution.

(a) The choice E1 = L gives C(L) ≤ lenght(L). If E ⊃
n
∪
i=1
Ei then

n∑
i=1

diam (Ei) ≥ lenght (L): By induction, n = l obvious, and assuming

that En+1 contains the end point a of L, define the segment Lε = {x ∈
L : dist (x, a) ≥ diam (En+1) + ε} and use induction assumption to get
n+1∑
i=1

diam (Ei) ≥ lenght (Lε) + diam (En+1) ≥ lenght (L)− ε; but ε > 0 is

arbitrary.

(b) If f is a contraction of E onto L and E ⊂
n
∪
i=1
Ei then L ⊂

n
∪
i=1
f(Ei)

and lenght (L) ≤
n∑
i=1

diam (f(Ei)) ≤
n∑
i=1

diam (Ei).

(c1) Let E = T ∪T ′ where T is the triangle with vertices (−2, 2), (2, 2)

and (0, 4), and T ′ is its reflexion about the x-axis. Suppose E ⊂
n
∪
i=1
Ei. If

no set among Ei meets both T and T ′, then Ei may be partitioned into

covers of segments [(−2, 2), (2, 2)] and [(−2, 2), (2,−2)], both of length

4, so
n∑
i=1

diam (Ei) ≥ 8. If at least one set among Ei, say Ek, meets

both T and T ′, choose a ∈ Ek ∩ T and b ∈ Ek ∩ T ′ and note that the

sets E ′i = Ei for i 6= k,E ′k = Ek ∪ [a, b] cover T ∪ T ′ ∪ [a, b], which is
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a set of upper content at least 8, since its orthogonal projection onto

y-axis is a segment of length 8. Since diam (Ej) = diam (E ′j), we get
n∑
i=1

diam (Ei) ≥ 8.

(c2) Let f be a contraction of E onto L = [a′, b′]. Choose a =

(al, a2), b = (b1, b2) ∈ E such that f(a) = a′ and f(b) = b′. Since

lenght (L) = dist (a′, b′) ≤ dist (a, b) and since the triangles have di-

ameter only 4, we may assume that a ∈ T and b ∈ T ′. Observe

that if a2 ≤ 3 then a lies on one of the segments joining some of

the points (−2, 2), (2, 2), (−1, 3), (1, 3); since all these points have dis-

tances from vertices, and so from points, of T2 at most
√

50, we get that

lenght (L) ≤ dist (a, b) ≤
√

50. Similarly if b2 ≥ −3. Finally, if a2 > 3

and b2 < −3, we note that every vertex, and so every point of T is in the

distance at most
√

10 for a and every vertex, and so every point, of T ′ is

in the distance at most
√

10 of b. Since f is a contraction, the image of

T lies in a segment containing a′ of length at most
√

10 and the image

of T ′ lies in a segment containing b′ of length at most
√

10. Since the

union of these two images is L, we get lenght (L) ≤ 2
√

10 ≤
√

50. Thus

K(E) ≤
√

50 < 8.

2.3.2 Day 2

Problem 1. The ”only if” part is obvious. Now suppose that lim
n→∞

(xn+1−
xn) = 0 and the sequence {xn} does not converge. Then there are two

cluster points K < L. There must be points from the interval (K,L)

in the sequence. There is an x ∈ (K,L) such that f(x) 6= x. Put

ε =
|f(x)− x|

2
> 0. Then from the continuity of the function f we

get that for some δ > 0 for all y ∈ (x − δ, x + δ) it is |f(y) − y| >
ε. On the other hand for n large enough it is |xn+1 − xn| < 2δ and

|f(xn) − xn| = |xn+1 − xn| < ε. So the sequence cannot come into the

interval (x− δ, x+ δ), but also cannot jump over this interval. Then all

cluster points have to be at most x− δ (a contradiction with L being a
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cluster point), or at least x + δ (a contradiction with K being a cluster

point).

Problem 2. First we show that

If cosh t is rational and m ∈ N, then cosh mt is rational. (1)

Since cosh 0.t = cosh 0 = 1 ∈ Q and cosh 1.t = cosh t ∈ Q, (1) follows

inductively from

cosh(m+ 1)t = 2 cosh t.coshmt− cosh(m− 1)t.

The statement of the problem is obvious for k = 1, so we consider k ≥ 2.

For any m we have

cosh θ = cosh((m+ 1)θ −mθ) =

= cosh(m+ 1)θ. coshmθ − sinh(m+ 1)θ. sinhmθ (2)

= cosh(m+ 1)θ. coshmθ −
√

cosh2(m+ 1)θ − 1
√

cosh2mθ − 1

Set cosh kθ = a, cosh(k + 1)θ = b, a, b ∈ Q. Then (2) with m = k gives

cosh θ = ab−
√
a2 − 1

√
b2 − 1

and then

(a2 − 1)(b2 − 1) = (ab− cosh θ)2

= a2b2 − 2ab cosh θ + cosh2 θ.
(3)

Set cosh(k2 − 1)θ = A, coshk2θ = B. From (1) with m = k − 1 and

t = (k + 1)θ we have A ∈ Q. From (1) with m = k and t = kθ we have

B ∈ Q. Moreover k2 − 1 > k implies A > a and B > b. Thus AB > ab.

From (2) with m = k2 − 1 we have

(A2 − 1)(B2 − 1) = (AB − cosh θ)2

= A2B2 − 2AB cosh θ + cosh2 θ.
(4)

So after we cancel the cosh2 θ from (3) and (4) we have a non-trivial

linear equation in cosh θ with rational coefficients.

Problem 3. (a) All of the matrices in G are of the form[∗ ∗
0 ∗

]
.
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So all of the matrices in H are of the form

M(x) =
[
1 x
0 1

]
,

so they commute. Since M(x)−l = M(−x), H is a subgroup of G.

(b) A generator of H can only be of the form M(x), where x is a

binary rational, i.e., x =
p

2n
with integer p and non-negative integer n.

In H it holds

M(x)M(y) = M(x+ y)

M(x)M(y)−1 = M(x− y).

The matrices of the form M( 1
2n ) are in H for all n ∈ N. With only finite

number of generators all of them cannot be achieved.

Problem 4. Assume the contrary - there is an arcA ⊂ C with length

l(A) =
π

2
such that A ⊂ B\Γ. Without loss of generality we may assume

that the ends of A are M = (
1√
2
,

1√
2

), N = (
1√
2
,− 1√

2
). A is compact

and Γ is closed. From A ∩ Γ = ∅ we get δ > 0 such that dist(x, y) > δ

for every x ∈ A, y ∈ Γ.

Given ε > 0 with Eε we denote the ellipse with boundary:
x2

(1 + ε)2 +

y2

b2
= 1, such that M,N ∈ Eε. Since M ∈ Eε we get

b2 =
(1 + ε)2

2(1 + ε)2 − 1
.

Then we have

areaEε = π
(1 + ε)2√

2(1 + ε)2 − 1
> π = areaD.

In view of the hypotheses, Eε\ 6= ∅ for every ε > 0. Let S = {(x, y) ∈
R2 : |x| > |y|}. From Eε\S ⊂ D ⊂ B it follows that Eε\B ⊂ S. Taking

ε < δ we get that

∅ 6= Eε\B ⊂ Eε ∩ S ⊂ D1+ε ∪ S ⊂ B
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- a contradiction (we use the notation Dt = {(x, y) ∈ R2 : x2 +y2 ≤ t2}).

Remark. The ellipse with maximal area is well known as John’s ellipse.

Any coincidence with the President of the Jury is accidental.

Problem 5.

(1) Set f(t) =
t

(1 + t2)2 , h =
1√
x

. Then

∞∑
n=1

nx

(n2 + x)2 = h
∞∑
n=1

f(nh) →
h→0

∞∫
0

f(t)dt =
1

2
.

The convergence holds since h
∞∑
n=1

f(nh) is a Riemann sum of the integral

∞∫
0
f(t)dt. There are no problems with the infinite domain because f

is integrable and f ↓ 0 for x → ∞ (thus h
∞∑
n=N

f(nh) ≥
∞∫
nN

f(t)dt ≥

h
∞∑

n=N+1
f(nh)).

(ii) We have

∣∣∣ ∞∑
i=1

nx

(n2 + x)2 −
1

2

∣∣∣ =
∣∣∣ ∞∑
n=1

(
hf(nh)−

nh+h
2∫

nh−h2

f(t)dt
)
−

h
2∫

0

f(t)dt
∣∣∣

≤
∞∑
n=1

∣∣∣hf(nh)−

nh+h
2∫

nh−h2

f(t)dt
∣∣∣+

h
2∫

0

f(t)dt

(1)

Using twice integration by parts one has

2bg(a)−
a+b∫
a−b

g(t)dt = −1

2

b∫
0

(b− t)2(g′′(a+ t) + g′′(a− t))dt (2)

for every g ∈ C2[a− b, a+ b]. Using f(0) = 0, f ∈ C2[0, h/2] one gets

h/2∫
0

f(t)dt = O(h2). (3)
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From (1), (2) and (3) we get

∣∣∣ ∞∑
i=1

nx

(n2 + x)2 −
1

2

∣∣∣ ≤ ∞∑
n=1

h2

nh+ 1
2∫

nh− 1
2

|f ′′(t)|dt+O(h2) =

= h2

∞∫
1
2

|f ′′(t)|dt+O(h2) = O(h2) = O(x−1).

Problem 6.

(i) Put for n ∈ N

cn =
(n+ 1)n

nn−1 (2.1)

Observe that c1c2 . . . cn = (n+ 1)n. Hence, for n ∈ N,

(a1a2 . . . an)
1/n =

(a1c1a2c2 . . . ancn)
1/n

(n+ 1)

≤ (a1c1 + · · ·+ ancn)

n(n+ 1)
.

Consequently,
∞∑
n=1

(a1a2 . . . an)
1/n ≤

∞∑
n=1

ancn

( ∞∑
m=n

(m(m+ 1))−1
)
. (2)

Since ∞∑
m=n

(m(m+ 1))−1 =
∞∑
m=n

( 1

m
− 1

m+ 1

)
=

1

n

we have
∞∑
n=1

ancn

( ∞∑
m=n

(m(m+ 1))−1
)

=
∞∑
n=1

ancn
n

=
∞∑
n=1

an(
(n+ 1)

n
)n < e

∞∑
n=1

an

(by (1)). Combining the last inequality with (2) we get the result.

(ii) Set an = nn−1(n + 1)−n for n = 1, 2, . . . , N and an = 2−n for

n > N , where N will be chosen later. Then

(a1 . . . an)
1/n =

1

n+ 1
(3)
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for n ≤ N . Let K = K(ε) be such that(n+ 1

n

)n
> ε− ε

2
for n > K. (4)

Choose N from the condition

K∑
n=1

an +
∞∑
n=1

2−n ≤ ε

(2e− ε)(e− ε)

N∑
n=K+1

1

n
, (5)

which is always possible because the harmonic series diverges. Using (3),

(4) and (5) we have

∞∑
n=1

an =
K∑
n=1

an +
∞∑

n=N+1

2−n +
N∑

n=K+1

1

n

( n

n+ 1

)n
<

<
ε

(2e− ε)(e− ε)

N∑
n=K+1

1

n
+
(
e− ε

2

)−1 N∑
n=K+1

1

n
=

=
1

e− ε

N∑
n=K+1

1

n
≤ 1

e− ε

∞∑
n=1

(a1 . . . an)
1/n.

2.4 Solutions of Olympic 1997

2.4.1 Day 1

Problem 1.

It is well known that

−1 =

1∫
0

lnxdx = lim
n→∞

1

n

n∑
k=1

ln
(k
n

)
(Riemman’s sums). Then

1

n

n∑
k=1

ln
(k
n

+ εn

)
≥ 1

n

n∑
k=1

ln
(k
n

)
→
n→∞

−1.

Given ε > 0 there exist n0 such that 0 < εn ≤ ε for all n ≥ n0. Then

1

n

n∑
k=1

ln
(k
n

+ εn

)
≤ 1

n

n∑
k=1

ln
(k
n

+ ε
)
.
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Since

lim
n→∞

1

n

n∑
k=1

ln
(k
n

+ ε
)

=

1∫
0

ln (x+ ε)dx

=

1+ε∫
ε

lnxdx

we obtain the result when ε goes to 0 and so

lim
n→∞

1

n

n∑
k=1

ln
(k
n

+ εn) = −1.

Problem 2.

a) Yes. Let S =
∞∑
n=1

an, Sn =
n∑
k=1

ak. Fix ε > 0 and a number no

such that |Sn − S| < ε for n > n0. The partial sums of the permuted

series have the form L2n−1+k = S2n−1 + S2n − S2n−k, 0 ≤ k < 2n−1 and for

2n−1 > n0 we have |L2n−1+k−S| < 3ε, i.e. the permuted series converges.

b) No. Take an =
(−1)n+1
√
n

. Then L3.2n−2 = S2n−1 +
2n−1−1∑
k=2n−2

1√
2k + 1

and L3.2n−2 − S2n−1 ≥ 2n−2 1√
2n
→
n→∞

∞, so L3.2n−2 →
n→∞

∞.

Problem 3.

Set S = A+ ωB, where ω = −1

2
+ i

√
3

2
. We have

SS = (A+ ωB)(A+ ωB) = A2 + ωBA+ ωAB +B2

= AB + ωBA+ ωAB = ω(BA− AB),

because ω + 1 = −ω. Since det(SS) = detS.detS is a real number and

detω(BA−AB) = ωn and det(BA−AB) 6= 0, then ωn is a real number.

This is possible only when n is divisible by 3.

Problem 4.

a) We construct inductively the sequence {ni} and the ratios

θk =
α∏k

1(1 +
1

ni
)
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so that

θk > 1 for all k.

Choose nk to be the least n for which

n+
1

n
< θk−1

(θ0 = α) so that for each k,

1 +
1

nk
< θk−1 ≤ 1 +

1

nk − 1
. (1)

Since

θk−1 ≤ 1 +
1

nk − 1

we have

1 +
1

nk+1
< θk =

θk−1

1 +
1

nk

≤
1 +

1

nk − 1

1 +
1

nk

= 1 +
1

n2
k − 1

.

Hence, for each k, nk+1 ≥ n2
k.

Since n1 ≥ 2, nk →∞ so that θk → 1. Hence

α =
∞∏
1

(
1 +

1

nk

)
.

The uniquness of the infinite product will follow from the fact that on

every step nk has to be determine by (1).

Indeed, if for some k we have

1 +
1

nk
≥ θk−1

then θk ≤ 1, θk+1 < 1 and hence {θk} does not converge to 1.

Now observe that for M > 1,(
1+

1

M

)(
1+

1

M 2

)(
1+

1

M 4

)
· · · = 1+

1

M
+

1

M 2 +
1

M 3 +· · · = 1+
1

M − 1
.

(2)

Assume that for some k we have

1 +
1

nk − 1
< θk−1.
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Then we get

α

(1 + 1
n1

)(1 + 1
n2

) · · ·
=

θk−1

(1 + 1
nk

)(1 + 1
nk+1

) · · ·

≥ θk−1

(1 + 1
nk

)(1 + 1
n2
k
) · · ·

=
θk−1

1 + 1
nk−1

> 1

- a contradiction,

b) From (2) α is rational if its product ends in the stated way.

Conversely, suppose α is the rational number
p

q
, Our aim is to show

that for some m,

θm−1 =
nm

nm − 1
.

Suppose this is not the case, so that for every m,

θm−1 <
nm

nm − 1
. (3)

For each k we write

θk =
pk
qk

as a fraction (not necessarily in lowest terms) where

p0 = p, q0 = q

and in general

pk = pk−1nk, qk = qk−1(Nk + 1).

The numbers pk − qk are positive integers: to obtain a contradiction it

suffices to show that this sequence is strictly decreasing. Now,

pk − qk − (pk−1 − qk−1) = nkpk−1 − (nk + 1)qk−1 − pk−1 + qk−1

= (nk − 1)pk−1 − nkqk−1

and this is negative because

pk−1

qk−1
= θk−1 <

nk
nk − 1

by inequality (3).
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Problem 5.

a) For x = a the statement is trivial. Let x 6= 0. Then max
i
xi > 0

and min
i
xi < 0. Hence ‖ x ‖∞< 1. From the hypothesis on x it follows

that:

i) If xj ≤ 0 then max
i
xi ≤ xj + 1.

ii) If xj ≥ 0 then min
i
xi ≥ xj − 1.

Consider y ∈ Zn
0 , y 6= 0. We split the indices {1, 2, . . . , n} into five

sets:

I(0) = {i : yi = 0},
I(+,+) = {i : yi > 0, xi ≥ 0}, I(+,−) = {i : yi > 0, xi < 0},
I(−,+) = {i : yi < 0, xi > 0}, I(−,−) = {i : yi < 0, xi ≤ 0}

As least one of the last four index sets is not empty. If I(+,+) 6= ∅ or

I(−,−) 6= ∅ then ‖ x + y ‖∞≥ 1 >‖ x ‖∞. If I(+,+) = I(−,−) = ∅
then

∑
yi = 0 implies I(+,−) 6= ∅ and I(−,+) 6= ∅. Therefore i) and

ii) give ‖ x+ y ‖∞≥‖ x ‖∞ which completes the case p =∞.

Now let 1 ≤ p < ∞. Then using i) for every j ∈ I(+,−) we get

|xj + yj| = yj − 1 + xj + 1 ≥ |yj| − 1 + max
i
xi. Hence

|xj + yj|p ≥ |yj| − 1 + |xk|p for every k ∈ I(−,+) and j ∈ I(+,−).

Similarly

|xj + yj|p ≥ |yj| − 1 + |xk|p for every k ∈ I(+,−) and j ∈ I(−,+);

|xj + yj|p ≥ |yj|+ |xj|p for every j ∈ I(+,+) ∪ I(−,−).
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Assume that
∑

j∈(+,−)
1 ≥

∑
j∈I(−,+)

1. Then

‖ x+ y ‖pp − ‖ x ‖pp
=

∑
j∈I(+,+)∪I(−,−)

(|xj + yj|p − |xj|p) +
( ∑
j∈I(+,−)

|xj + yj|p −
∑

k∈I(−,+)

|xk|p
)

+
( ∑
j∈I(−,+)

|xj + yj|p −
∑

k∈I(+,−)

|xk|p
)

≥
∑

j∈I(+,+)∪I(−,−)

|yj|+
∑

j∈I(+,−)

(|yj| − 1)

+
( ∑
j∈I(−,+)

(|yj| − 1)−
∑

j∈I(+,−)

1 +
∑

j∈I(−,+)

1
)

=
n∑
i=1

|yi| − 2
∑

j∈I(+,−)

1 = 2
∑

j∈I(+,−)

(yj − 1) + 2
∑

j∈I(+,+)

yj ≥ 0.

The case
∑

j∈I(+,−)
1 ≤

∑
j∈I(−,+)

1 is similar. This proves the statement.

b) Fix p ∈ (0, 1) and a rational t ∈ (1
2 , 1). Choose a pair of positive

integers m and l such that mt = l(1− t) and set n = m+ l. Let

xi = t, i = 1, 2, . . . ,m; xi = t− 1, i = m+ 1,m+ 2, . . . , n;

yi = −1, i = 1, 2, . . . ,m; ym+1 = m; yi = 0, i = m+ 2, . . . , n.

Then x ∈ Rn
0 ,max

i
xi −min

i
xi = 1, y ∈ Zn

0 and

‖ x ‖pp − ‖ x+ y ‖pp= m(tp − (1− t)p) + (1− t)p − (m− 1 + t)p,

which is possitive for m big enough.

Problem 6.

a) No.

Consider F = {A1, B1, . . . , An, Bn, . . .}, where An = {1, 3, 5, . . . , 2n−
1, 2n}, Bn = {2, 4, 6, . . . , 2n, 2n+ 1}.

b) Yes.

We will prove inductively a stronger statement:

Suppose F,G are two families of finite subsets of N such that:
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1) For every A ∈ F and B ∈ G we have A ∩B 6= ∅;
2) All the elements of F have the same size r, and elements of G- size

s. (we shall write #(F ) = r,#(G) = s).

Then there is a finite set Y such that A∪B ∪ Y 6= ∅ for every A ∈ F
and ∈ G.

The problem b) follows if we take F = G.

Proof of the statement: The statement is obvious for r = s = 1.

Fix the numbers r, s and suppose the statement is proved for all pairs

F ′, G′ with #(F ′) < r,#(G′) < s. Fix A0 ∈ F,B0 ∈ G. For any subset

C ⊂ A0 ∪B0, denote

F (C) = {A ∈ F : A ∩ (A0 ∪B0) = C}.

Then F = ∪
∅6=C⊂A0∪B0

F (C). It is enough to prove that for any pair of

non-empty sets C,D ⊂ A0 ∪B0 the families F (C) and G(D) satisfy the

statement.

Indeed, if we denote by YC,D the corresponding finite set, then the

finite set ∪
C,D⊂A0∪B0

YC,D will satisfy the statement for F and G. The

proof for F (C) and G(D).

If C ∩D 6= ∅, it is trivial.

If C ∩ D = ∅, then any two sets A ∈ F (C), B ∈ G(D) must meet

outside A0∪B0. Then if we denote F̃ (C) = {A\C : A ∈ F (C)}, G̃(D) =

{B\D : B ∈ G(D)}, then F̃ (C) and G̃(D) satisfy the conditions 1) and

2) above, with #(F̃ (C)) = #(F )−#C < r,#(G̃(D)) = #(G)−#D < s,

and the inductive assumption works.

2.4.2 Day 2

Problem 1.

Let c =
1

2
f ′′(0). We have

g =
(f ′)2 − 2ff ′′

2(f ′)2
√
f

,
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where

f(x) = cx2 +O(x3), f ′(x) = 2cx+O(x2), f ′′(x) = 2c+O(x).

Therefore (f ′(x))2 = 4c2x2 +O(x3),

2f(x)f ′′(x) = 4c2x2 +O(x3)

and

2(f ′(x))2
√
f(x) = 2(4c2x2 +O(x3))|x|

√
c+O(x).

g is bounded because

2(f ′(x))2
√
f(x)

|x|3
→
x→0

8c5/2 6= 0

and f ′(x)2 − 2f(x)f”(x) = O(x3).

The theorem does not hold for some C2-functions.

Let f(x) = (x+ |x|3/2)2 = x2 + 2x2
√
|x|+ |x|3, so f is C2. For x > 0,

g(x) =
1

2

( 1

1 + 3
2

√
x

)′
= −1

2
· 1

(1 + 3
2

√
x)2
· 3

4
· 1√

x
→
x→0
−∞.

Problem 2.

Let I denote the identity n× n matrix. Then

detM.detH = det
[
A B
C D

]
.det

[
I F
0 H

]
= det

[
A 0
C I

]
= detA.

Problem 3.

Set f(t) =
sin(log t)

tα
. We have

f ′(x) =
−α
tα+1 sin(log t) +

cos(log t)

tα+1 .

So |f ′(t)| ≤ 1 + α

tα+1 for α > 0. Then from Mean value theorem for some

θ ∈ (0, 1) we get |f(n+1)−f(n)| = |f ′(n+θ)| ≤ 1 + α

nα+1 . Since
∑ 1 + α

nα+1 <

+∞ for α > 0 and f(n) →
n→∞

0 we get that
∞∑
n=1

(−1)n−1f(n) =
∞∑
n=1

(f(2n−

1)− f(2n)) converges.
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Now we have to prove that
sin(logn)

nα
does not converge to 0 for α ≤ 0.

It suffices to consider α = 0.

We show that an = sin(logn) does not tend to zero. Assume the

contrary. There exist kn ∈ N and λn ∈
[
− 1

2
,
1

2

]
for n > e2 such that

logn

π
= kn + λn. Then |an| = sinπ|λn|. Since an → 0 we get λn → 0.

We have

kn+1 − kn =

=
log (n+ 1)− logn

π
− (λn+1 − λn) =

1

π
log
(

1 +
1

n

)
− (λn+1 − λn).

Then |kn+1− kn| < 1 for all n big enough. Hence there exists no so that

kn = kn0
for n > n0. So

logn

π
= kn0

+ λn for n > n0. Since λn → 0 we

get contradiction with logn→∞.

Problem 4.

a) If we denote by Eij the standard basis of Mn consisting of elemen-

tary matrix (with entry 1 at the place (i, j) and zero elsewhere), then

the entries cij of C can be defined by cij = f(Eji).

b) Denote by L the n2−1-dimensional linear subspace ofMn consisting

of allmatrices with zero trace. The elements Eij with i 6= j and the

elements Eii − Enn, i = 1, . . . , n− 1 form a linear basis for L. Since

Eij = Eij.Ejj − EjjEij, i 6= j

Eii − Enn = EinEni − EniEin, i = 1, . . . , n− 1,

then the property (2) shows that f is vanishing identically on L. Now,

for any A ∈ Mn we have A − 1

n
tr(A).E ∈ L, where E is the identity

matrix, and therefore f(A) =
1

n
f(E).tr(A).

Problem 5.

Let fn = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
n times

, f 0 = id, f−n = (f−1)n for every natural num-

ber n. Let T (x) = {fn(x) : n ∈ Z} for every x ∈ X. The sets T (x) for

different x′s either coinside or do not intersect. Each of them is mapped
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by f onto itself. It is enough to prove the theorem for every such set. Let

A = T (x). If A is finite, then we can think that A is the set of all vertices

of a regular n polygon and that f is rotation by
2π

n
. Such rotation can

be obtained as a composition of 2 symmetries mapping the n polygon

onto itself (if n is even then there are axes of symmetry making
π

n
angle;

if n = 2k+1 then there are axes making k
2π

n
angle). If A is infinite then

we can think that A = Z and f(m) = m + 1 for every m ∈ Z. In this

case we define g1 as a symmetry relative to
1

2
, g2 as a symmetry relative

to 0.

Problem 6.

a) f(x) = x sin
1

x
.

b) Yes. The Cantor set is given by

C = {x ∈ [0, 1) : x =
∞∑
j=1

bj3
−j, bj ∈ {0, 2}}.

There is an one-to-one mapping f : [0, 1) → C. Indeed, for x =
∞∑
j=1

aj2
−j, aj ∈ {0, 1} we set f(x) =

∞∑
j=1

(2aj)3
−j. Hence C is uncount-

able.

For k = 1, 2, . . . and i = 0, 1, 2, . . . , 2k−1 − 1 we set

ak,i = 3−k
(

6
k−2∑
j=0

aj3
j + 1

)
, bk,i = 3−k

(
6
k−2∑
j=0

aj3
j + 2

)
,

where i =
k−2∑
j=0

aj2
j, aj ∈ {0, 1}. Then

[0, 1]\C = ∪∞k=1 ∪2k−1−1
i=0 (ak,i, bk,i),

i.e. the Cantor set consists of all points which have a trinary representa-

tion with 0 and 2 as digits and the points of its compliment have some

1′s in their trinary representation. Thus,
2k−1−1
∪
i=0

(ak,i, bk,i) are all points

(exept ak,i) which have 1 on k-th place and 0 or 2 on the j-th (j < k)

places.
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Noticing that the points with at least one digit equals to 1 are every-

where dence in [0, 1] we set

f(x) =
∞∑
k=1

(−1)kgk(x).

where gk is a piece-wise linear continuous functions with values at the

knots

gk

(ak,i + bk,i
2

)
= 2−k,

gk(0) = gk(1) = gk(ak,i) = gk(bk,i) = 0, i = 0, 1, . . . , 2k−1 − 1.

Then f is continuous and f ”crosses the axis” at every point of the

Cantor set.

2.5 Solutions of Olympic 1998

2.5.1 Day 1

Problem 1. First choose a basis {v1, v2, v3} of U1. It is possible to

extend this basis with vectors v4, v5 and v6 to get a basis of U2. In the

same way we can extend a basis of U2 with vectors v7, . . . , v10 to get as

basis of V .

Let T ∈ ε be an endomorphism which has U1 and U2 as invariant

subspaces. Then its matrix, relative to the basis {v1, . . . , v10} is of the

form 

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 0 ∗ ∗ ∗ ∗
0 0 0 0 0 0 ∗ ∗ ∗ ∗
0 0 0 0 0 0 ∗ ∗ ∗ ∗
0 0 0 0 0 0 ∗ ∗ ∗ ∗


So dimRε = 9 + 18 + 40 = 67.

Problem 2.

Let Sn be the group of permutations of {1, 2, . . . , n}.
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1) When n = 3 the proposition is obvious: if x = (12) we choose

y = (123); if x = (123) we choose y = (12).

2) n = 4. Let x = (12)(34). Assume that there exists y ∈ Sn, such

that S4 =< x, y >. Denote by K the invariant subgroup

K = {id, (12)(34), (13)(24), (14)(23)}.

By the fact that x and y generate the whole group S4, it follows that

the factor group S4/K contains only powers of y = yK, i.e., S4/K is

cyclic. It is easy to see that this factor-group is not comutative (some-

thing more this group is not isomorphic to S3).

3) n = 5

a) If x = (12), then for y we can take y = (12345).

b) If x = (123), we set y = (124)(35). Then y3xy3 = (125) and

y4 = (124). Therefore (123), (124), (125) ∈< x, y >- the subgroup gen-

erated by x and y. From the fact that (123), (124), (125) generate the

alternating subgroup A5, it follows that A5 ⊂< x, y >. Moreover y is an

odd permutation, hence < x, y >= S5.

c) If x = (123)(45), then as in b) we see that for y we can take the

element (124).

d) If x = (1234), we set y = (12345). Then (yx)3 = (24) ∈< x, y >

, x2(24) = (13) ∈< x, y > and y2 = (13524) ∈< x, y >. By the fact

(13) ∈< x, y > and (13524) ∈< x, y >, it follows that < x, y >= S5.

e) If x = (12)(34), then for y we can take y = (1354). Then y2x =

(125), y3x = (124)(53) and by c) S5 =< x, y >.

f) If x = (12345), then it is clear that for y we can take the element

y = (12).

Problem 3. a) Fix x = x0 ∈ (0, 1). If we denote xn = fn(x0), n =

1, 2, . . . it is easy to see that x1 ∈ (0, 1/2], x1 ≤ f(x1) ≤ 1/2 and xn ≤
f(xn) ≤ 1/2 (by induction). Then (xn)n is a bounded nondecreasing

sequence and, since xn+1 = 2xn(1−xn), the limit l = limn→∞ xn satisfies

l = 2l(1 − l), which implies l = 1/2. Now the monotone convergence
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theorem implies that

lim
n→∞

1∫
0

fn(x)dx =
1

2
.

b) We prove by induction that

fn(x) =
1

2
− 22n−1

(
1− 1

2

)2n

(1)

holds for n = 1, 2, . . .. For n = 1 this is true, since f(x) = 2x(1 − x) =
1

2
− 2(x− 1

2
)2. If (1) holds for some n = k, then we have

fk+1(x) = fk(f(x)) =
1

2
− 22k−1(

1

2
− 2(x− 1

2
)2)− 1

2
)2k

=
1

2
− 22k−1(−2(x− 1

2
)2)2k

=
1

2
− 22k+1−1(x− 1

2
)2k+1

which is (2) for n = k + 1.

Using (1) we can compute the integral,

1∫
0

fn(x)dx =
[1

2
x− 22n−1

2n + 1

(
x− 1

2

)2n+1]1
x=0

=
1

2
− 1

2(2n + 1)
.

Problem 4. Define the function

g(x) =
1

2
f 2(x) + f ′(x).

Because g(0) = 0 and

f(x).f ′(x) + f ′′(x) = g′(x),

it is enough to prove that there exists a real number 0 < η ≤ 1 for which

g(η) = 0.

a) If f is never zero, let

h(x) =
x

2
− 1

f(x)
.
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Because h(0) = h(1) = −1

2
, there exists a real number 0 < η < 1 for

which h′(η) = 0. But g = f 2.h′, and we are done.

b) If f has at least one zero, let z1 be the first one and z2 be the last

one. (The set of the zeros is closed.) By the conditions, 0 < z1 ≤ z2 < 1.

The function f is positive on the intervals [0, z1) and (z2, 1]; this

implies that f ′(z1) ≤ 0 and f ′(z2) ≥ 0. Then g(z1) = f ′(z1) ≤ 0 and

g(z2) = f ′(z2) ≥ 0, and there exists a real number η ∈ [z1, z2] for which

g(η) = 0.

Remark. For the function f(x) =
2

x+ 1
the conditions hold and

f.f ′ + f” is constantly 0.

Problem 5. Observe that both sides of (2) are identically equal to zero

if n = 1. Suppose that n > 1. Let x1, . . . , xn be the zeros of P . Clearly

(2) is true when x = xi, i ∈ {1, . . . , n}, and equality is possible only if

P ′(xi) = 0, i.e., if xi is a multiple zero of P . Now suppose that x is not

a zero of P . Using the identities

P ′(x)

P (x)
=

n∑
i=1

1

x− xi
,
P ′′(x)

P (x)
=

∑
1≤i<j≤n

2

(x− xi)(x− xj)
,

we find

(n− 1)
(P ′(x)

P (x)

)2
− nP

′′(x)

P (x)
=

n∑
i=1

n− 1

(x− xi)2 −
∑

1≤i<j≤n

2

(x− xi)(x− xj)
.

But this last expression is simply∑
1≤i<j≤n

( 1

x− xi
− 1

x− xj

)2
,

and therefore is positive. The inequality is proved. In order that (2)

holds with equality sign for every real x it is necessary that x1 = x2 =

. . . = xn. A direct verification shows that indeed, if P (x) = c(x − x1)
n,

then (2) becomes an identity.
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Problem 6. Observe that the integral is equal to

π
2∫

0

f(sin θ) cos θdθ

and to
π
2∫

0

f(cos θ) sin θdθ

So, twice the integral is at most

π
2∫

0

1dθ =
π

2
.

Now let f(x) =
√

1− x2. If x = sin θ and y = sinφ then

xf(y) + yf(x) = sin θ cosφ+ sinφ cos θ = sin(θ + φ) ≤ 1.

2.5.2 Day 2

Problem 1. We use induction on k. By passing to a subset, we may

assume that f1, . . . , fk are linearly independent.

Since fk is independent of f1, . . . , fk−1, by induction there exists a

vector ak ∈ V such that f1(ak) = · · · = fk−l(ak) = 0 and fk(ak) =6=
0. After normalising, we may assume that fk(ak) = 1. The vectors

a1, . . . , ak−1 are defined similarly to get

fi(aj) =

{
1 if i = j
0 if i 6= j.

For an arbitrary x ∈ V and 1 ≤ i ≤ k, fi(x − f1(x)a1 − f2(x)a2 − · · · −

fk(x)ak) = fi(x) −
k∑
j=1

fj(x)fi(aj) = fi(x) − fi(x)fi(ai) = 0, thus f(x −

f1(x)a1 − · · · − fk(x)ak) = 0. By the linearity of f this implies f(x) =

f1(x)f(a1) + · · · + fk(x)f(ak), which gives f(x) as a linear combination

of f1(x), . . . , fk(x).
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Problem 2. Denote x0 = 1, x1 = −1

2
, x2 =

1

2
, x3 = 1,

ω(x) =
3∏
i=0

(x− xi),

ωk(x) =
ω(x)

x− xk
, k = 0, . . . , 3,

lk(x) =
ωk(x)

ωk(xk)
.

Then for every f ∈ P

f ′′(x) =
3∑

k=0

l′′k(x)f(xk),

|f ′′(x)| ≤
3∑

k=0

|l′′k(x)|.

Since f” is a linear function max−1≤x≤1 |f ′′(x)| is attained either at x =

−1 or at x = 1. Without loss of generality let the maximum point is

x = 1. Then

sup
f∈P

max
−1≤x≤1

|f ′′(x)| =
3∑

k=0

|l′′k(1)|.

In order to have equality for the extremal polynomial f∗ there must hold

f∗(xk) = signl′′k(1), k = 0, 1, 2, 3.

It is easy to see that {l′′k(1)}3k=0 alternate in sign, so f∗(xk) = (−1)k−1, k =

0, . . . , 3. Hence f∗(xk) = T3(x) = 4x3 − 3x, the Chebyshev polynomial

of the first kind, and f ′′∗ (1) = 24. The other extremal polynomial, corre-

sponding to x = −1, is −T3.

Problem 3. Let fn(x) = f(f(. . . f(︸ ︷︷ ︸
n

p))). It is easy to see that fn(x) is

a picewise monotone function and its graph contains 2n linear segments;

one endpoint is always on {(x, y) : 0 ≤ x ≤ 1, y = 0}, the other is

on {(x, y) : 0 ≤ x ≤ 1, y = 1}. Thus the graph of the identity function
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intersects each segment once, so the number of points for which fn(x) = x

is 2n.

Since for each n-periodic points we have fn(x) = x, the number of

n-periodic points is finite.

A point x is n-periodic if fn(x) = x but fk(x) 6= x for k = 1, . . . , n−1.

But as we saw before fk(x) = x holds only at 2k points, so there are at

most 21 + 22 + · · · + 2n−1 = 2n − 2 points x for which fk(x) = x for at

least one k ∈ {1, 2, . . . , n − 1}. Therefore at least two of the 2n points

for which fn(x) = x are n-periodic points.

Problem 4. It is clear that id : An → An given by id(x) = x, does not

verify condition (2). Since id is the only increasing injection on An,F
does not contain injections. Let us take any f ∈ F and suppose that

#(f−1(k)) ≥ 2. Since f is increasing, there exists i ∈ An such that

f(i) = f(i + 1) = k. In view of (2), f(k) = f(f(i + 1)) = f(i) = k. If

{i < k : f(i) < k} = ∅, then taking j = max{i < k : f(i) < k} we get

f(j) < f(j + 1) = k = f(f(j + 1)), a contradiction. Hence f(i) = k for

i ≤ k. If #(f−1({l})) ≥ 2 for some l ≥ k, then the similar consideration

shows that f(i) = l = k for i ≤ k. Hence #(f−1{i}) = 0 or 1 for every

i > k. Therefore f(i) ≤ i for i > k. If f(l) = l, then taking j = max{i <
l : f(i) < l} we get f(j) < f(j + 1) = l = f(f(j + 1)), a contradiction.

Thus, f(i) ≤ i−1 for i > k. Let m = max{i : f(i) = k}. Since f is non-

constant m ≤ n−1. Since k = f(m) = f(f(m+1)), f(m+1) ∈ [k+1,m].

If f(l) > l−1 for some l > m+1, then l−1 and f(l) belong to f−1(f(l))

and this contradicts the facts above. Hence f(i) = i − 1 for i > m + 1.

Thus we show that every function f in F is defined by natural numbers

k, l,m, where 1 ≤ k < l = f(m+ 1) ≤ m ≤ n− 1.

f(i) =

k if i ≤ m
l if i = m
i− 1 if i > m+ 1

Then

#(F) =

(
n

3

)
.
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Problem 5. For every x ∈M choose spheres S, T ∈ S such that S 6= T

and x ∈ S ∩ T ; denote by U, V,W the three components of Rn\(S ∪ T ),

where the notation is such that ∂U = S, ∂V = T and x is the only point

of U ∩ V , and choose points with rational coordinates u ∈ U, v ∈ V ,

and w ∈ W . We claim that x is uniquely determined by the triple

< u, v, w >; since the set of such triples is countable, this will finish the

proof.

To prove the claim, suppose, that from some x′ ∈M we arrived to the

same < u, v, w > using spheres S ′, T ′ ∈ S and components U ′, V ′,W ′ of

Rn\(S ′∪T ′). Since S∩S ′ contains at most one point and since U∩U ′ 6= ∅,
we have that U ⊂ U ′ or U ′ ⊂ U ; similarly for V ′s and W ′s. Exchanging

the role of x and x′ and/or of U ′s and V ′s if necessary, there are only

two cases to consider: (a) U ⊃ U ′ and V ⊃ V ′ and (b) U ⊂ U ′, V ⊃ V ′

and W ⊃ W ′. In case (a) we recall that U ∩ V contains only x and

that x′ ∈ U ′ ∩ V ′, so x = x′. In case (b) we get from W ⊂ W ′ that

U ′ ⊂ U ∪ V ; so since U ′ is open and connected, and U ∩ V is just one

point, we infer that U ′ = U and we are back in the already proved case

(a).

Problem 6.

a) We first construct a sequence cn of positive numbers such that

cn → ∞ and
∞∑
n=1

cnbn <
1

2
. Let B =

∞∑
n=1

bn, and for each k = 0, 1, . . .

denote by Nk the first positive integer for which
∞∑

n=Nk

bn ≤
B

4k
.

Now set cn =
2k

5B
for each n,Nk ≤ n < Nk+1. Then we have cn → ∞

and
∞∑
n=1

cnbn =
∞∑
k=0

∑
Nk≤n<Nk+1

cnbn ≤
∞∑
k=0

2k

5B

∞∑
n=Nk

bn ≤
∞∑
k=0

2k

5B
.
B

4k
=

2

5
.

Consider the intervals In = (an − cnbn, an + cnbn). The sum of their

lengths is 2
∑
cnbn < 1, thus there exists a point x0 ∈ (0, 1) which is
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not contained in any In. We show that f is differentiable at x0, and

f ′(x0) = 0. Since x0 is outside of the intervals In, x0 6= an an for any n

and f(x0) = 0. For arbitrary x ∈ (0, 1)\{x0}, if x = an for some n, then∣∣∣f(x)− f(x0)

x− x0

∣∣∣ =
f(an)− 0

|an − x0|
≤ bn
cnbn

=
1

cn
,

otherwise
f(x)− f(x0)

x− x0
= 0. Since cn → ∞, this implies that for arbi-

trary ε > 0 there are only finitely many x ∈ (0, 1)\{x0} for which∣∣∣f(x)− f(x0)

x− x0

∣∣∣ < ε

does not hold, and we are done.

Remark. The variation of f is finite, which implies that f is differen-

tiable almost everywhere.

b) We remove the zero elements from sequence bn. Since f(x) = 0

except for a countable subset of (0, 1), if f is differentiable at some point

x0, then f(x0) and f ′(x0) must be 0.

It is easy to construct a sequence βn satisfying 0 < βn ≤ bn, bn → 0

and
∞∑
n=1

βn =∞.

Choose the numbers a1, a2, . . . such that the intervals In = (an −
βn, an +βn)(n = 1, 2, . . .) cover each point of (0, 1) infinitely many times

(it is possible since the sum of lengths is 2
∑
bn =∞. Then for arbitrary

x0 ∈ (0, 1), f(x0) = 0 and ε > 0 there is an n for which βn < ε and c0 ∈ In
which implies

|f(an)− f(x0)|
|an − x0|

>
bn
βn
≥ 1.

2.6 Solutions of Olympic 1999

2.6.1 Day 1

Problem 1.
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a) The diagonal matrix

A = λI =

λ 0
. . .

0 λ


is a solution for equation A3 = A+ I if and only if λ3 = λ+ 1, because

A3−A−I = (λ3−λ−1)I. This equation, being cubic, has real solution.

b) It is easy to check that the polynomial p(x) = x3 − x − 1 has

a positive real root λ1 (because p(0) < 0) and two conjugated complex

roots λ2 and λ3 (one can check the discriminant of the polynomial, which

is
(
− 1

3

)3
+
(
− 1

2

)2
=

23

108
> 0, or the local minimum and maximum

of the polynomial).

If a matrix A satisfies equation A3 = A + I, then its eigenvalues can

be only λ1, λ2 and λ3. The multiplicity of λ2 and λ3 must be the same,

because A is a real matrix and its characteristic polynomial has only

real coefficients. Denoting the multiplicity of λ1 by α and the common

multiplicity of λ2 and λ3 by β,

detA = λα1λ
β
2λ

β
3 = λα1 .(λ2λ3)

β.

Because λ1 and λ2λ3 = |λ2|2 are positive, the product on the right side

has only positive factors.

Problem 2. No. For, let π be a permutation of N and let N ∈ N. We

shall argue that
3N∑

n=N+1

π(n)

n2 >
1

9
.

In fact, of the 2N numbers π(N + 1), . . . , π(3N) only N can be ≤ N so

that at least N of them are > N . Hence

3N∑
n=N+1

π(n)

n2 ≥
1

(3N)2

3N∑
n=N+1

π(n) >
1

9N 2 ·N.N =
1

9
.

Solution 2. Let π be a permutation of N. For any n ∈ N, the

numbers π(1), . . . , π(n) are distinct positive integers, thus π(1) + · · · +
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π(n) ≥ 1 + · · ·+ n =
n(n+ 1)

2
. By this inequality,

∞∑
n=1

π(n)

n2 =
∞∑
n=1

(π(1) + · · ·+ p(n))
( 1

n2 −
1

(n+ 1)2

)
≥

≥
∞∑
n=1

n(n+ 1)

2
· 2n+ 1

n2(n+ 1)2 =
∞∑
n=1

2n+ 1

2n(n+ 1)
≥

∞∑
n=1

1

n+ 1
=∞.

Problem 3. Writing (1) with n− 1 instead of n,∣∣∣ n−1∑
k=1

3k(f(x+ ky)− f(x− ky))
∣∣∣ ≤ 1. (2)

From the difference of (1) and (2),

|3n(f(x+ ny)− f(x− ny))| ≤ 2;

which means

|f(x+ ny)− f(x− ny)| ≤ 2

3n
. (3)

For arbitrary u, v ∈ R and n ∈ N one can choose x and y such that

x−ny = u and x+ny = v, namely x =
u+ v

2
and y =

v − u
2n

, Thus, (3)

yields

|f(u)− f(v)| ≤ 2

3n

for arbitrary positive integer n. Because
2

3n
can be arbitrary small, this

implies f(u) = f(v).

Problem 4. Let g(x) =
f(x)

x
. We have f

( x

g(x)

)
= g(x). By induction

it follows that g
( x

gn(x)

)
= g(x), i.e.

f
( x

gn(x)

)
=

x

gn−1(x)
, n ∈ N. (1)

On the other hand, let substitute x by f(x) in f
( x2

f(x)

)
= x. From the

injectivity of f we get
f 2(x)

f(f(x))
= x, i.e. g(xg(x)) = g(x). Again by
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induction we deduce that g(xgn(x)) = g(x) which can be written in the

form

f(xgn(x)) = xgn−1(x), n ∈ N. (2)

Set f (m) = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
m times

. It follows from (1) and (2) that

f (m)(xgn(x)) = xgn−m(x),m, n ∈ N. (3)

Now, we shall prove that g is a constant. Assume g(x1) < g(x2). Then

we may find n ∈ N such that x1g
n(x1) ≤ x2g

n(x2). On the other hand,

if m is even then f (m) is strictly increasing and from (3) it follows that

xm1 g
n−m(x1) ≤ xm2 g

n−m(x2). But when n is fixed the opposite inequality

holds ∀m� 1. This contradiction shows that g is a constant, i.e. f(x) =

Cx,C > 0.

Conversely, it is easy to check that the functions of this type verify

the conditions of the problem.

Problem 5.

We prove the more general statement that if at least n+ k points are

marked in an n × k grid, then the required sequence of marked points

can be selected.

If a row or a column contains at most one marked point, delete it.

This decreases n + k by 1 and the number of the marked points by at

most 1, so the condition remains true. Repeat this step until each row

and column contains at least two marked points. Note that the condition

implies that there are at least two marked points, so the whole set of

marked points cannot be deleted.

We define a sequence b1, b2, . . . of marked points. Let b1 be an arbitrary

marked point. For any positive integer n, let b2n be an other marked

point in the row of b2n−1 and b2n+1 be an other marked point in the

column of b2n.

Let m be the first index for which bm is the same as one of the earlier

points, say bm = bl, l < m.
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If m− l is even, the line segments blbl+1, bl+1bl+2, . . . , bm−1bl = bm−1bm

are alternating horizontal and vertical. So one can choose 2k = m − l,
and (a1, . . . , a2k) = (bl, . . . , bm−1) or (a1, . . . , a2k) = (bl+1, . . . , bm) if l is

odd or even, respectively.

If m− l is odd, then the points b1 = bm, bl+1 and bm−1 are in the same

row/column. In this case chose 2k = m − l − 1. Again, the line seg-

ments bl+1bl+2, bl+2bl+3, . . . , bm−1bl+1 are alternating horizontal and verti-

cal and one can choose (a1, . . . , a2k) = (bl+1, . . . , bm−1) or (a1, . . . , a2k) =

bl+2, . . . , bm−1, bl+1 if l is even or odd, respectively.

Solution 2. Define the graph G in the following way: Let the vertices

of G be the rows and the columns of the grid. Connect a row r and a

column c with an edge if the intersection point of r and c is marked.

The graph G has 2n vertices and 2n edges. As is well known, if a

graph of N vertices contains no circle, it can have at most N − 1 edges.

Thus G does contain a circle. A circle is an alternating sequence of rows

and columns, and the intersection of each neighbouring row and column

is a marked point. The required sequence consists of these intersection

points.

Problem 6.

a) Let g(x) = max(0, f ′(x)). Then 0 <
1∫
−1
f ′(x)dx =

1∫
−1
g(x)dx +

1∫
−1

(f ′(x)−g(x))dx, so we get
1∫
−1
|f ′(x)|dx =

1∫
−1
g(x)dx+

1∫
−1

(g(x)−f ′(x))dx <

2
1∫
−1
g(x)dx. Fix p and c (to be determined at the end). Given any

t > 0, choose for every x such that g(x) > t an interval Ix = [x, y] such

that |f(y) − f(x)| > cg(x)1/p|y − x| > ct1/p|Ix| and choose disjoint Ixi.

that cover at least one third of the measure of the set {g > t}. For

I = ∪
i
Ii we thus have ct1/p|I| ≤

∫
I

f ′(x)dx ≤
1∫
−1
|f ′(x)|dx < 2

1∫
−1
g(x)dx;

so |{g > t}| ≤ 3|I| < 6

c
t−1/p

1∫
−1

g(x)dx. Integrating the inequality, we
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get
1∫
−1
g(x)dx =

1∫
0
|{g > t}|dt < 6

c

p

p− 1

1∫
−1

g(x)dx; this is a contradiction

e.g. for cp = (6p)/(p− 1).

b) No. Given c > 1, denote α =
1

c
and choose 0 < ε < 1 such

that
(1 + ε

2ε

)−α
<

1

4
. Let g : [−1, 1] → [−1, 1] be continuous, even,

g(x) = −1 for |x| ≤ ε and 0 ≤ g(x) < α
(|x|+ ε

2ε

)−α−1
for ε < |x| ≤

1 is chosen such that
1∫
ε

g(t)dt > − ε
2

+

1∫
ε

α
(|x|+ ε

2ε

)−α−1
dt = − ε

2
+

2ε
(

1 −
(1 + ε

2ε

)−α)
> ε. Let f =

∫
g(t)dt. Then f(1) − f(−1) ≥

−2ε + 2
1∫
ε

g(t)dt > 0. If ε < x < 1 and y = −ε, then |f(x) − f(y)| ≥

2ε −
x∫
ε

g(t)dt ≥ 2ε −
x∫
ε

α
(t+ ε

2ε

)−α−1
= 2ε

(x+ ε

2ε

)−α
> g(x)

|x− y|
α

=

f ′(x)
|x− y|
α

; symmetrically for −1 < x < −ε and y = ε.

2.6.2 Day 2

Problem 1. From 0 = (a + b)2 = a2 + b2 + ab + ba = ab + ba, we have

ab = −(ba) for arbitrary a, b, which implies

abc = a(bc) = −((bc))a = −(b(ca)) = (ca)b = c(ab) = −((ab)c) = −abc.

Problem 2. For all nonnegative integers n and modulo 5 residue class

r, denote by p
(r)
n the probability that after n throwing the sum of values

is congruent to r modulo n. It is obvious that p
(0)
0 = 1 and p

(1)
0 = p

(2)
0 =

p
(3)
0 = p

(4)
0 = 0.

Moreover, for any n > 0 we have

p(r)
n =

6∑
i=1

1

6
p

(r−i)
n−1 . (1)

From this recursion we can compute the probabilities for small values
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of n and can conjecture that p
(r)
n =

1

5
+

4

5.6n
if n ≡ r (mod 5) and

p
(r)
n =

1

5
− 1

5.6n
otherwise. From (1), this conjecture can be proved by

induction.

Solution 2. Let S be the set of all sequences consisting of digits

1, . . . , 6 of length n. We create collections of these sequences.

Let a collection contain sequences of the form

66 . . . 6︸ ︷︷ ︸
k

XY1 . . . Yn−k−1,

where X ∈ {1, 2, 3, 4, 5} and k and the digits Y1, . . . , Yn−k−1 are fixed.

Then each collection consists of 5 sequences, and the sums of the digits

of sequences give a whole residue system mod 5.

Except for the sequence 66 . . . 6, each sequence is the element of one

collection. This means that the number of the sequences, which have

a sum of digits divisible by 5, is
1

5
(6n − 1) + 1 if n is divisible by 5,

otherwise
1

5
(6n − 1).

Thus, the probability is
1

5
+

4

5.6n
if n is divisible by 5, otherwise it is

1

5
− 1

5.6n
.

Solution 3. For arbitrary positive integer k denote by pk the proba-

bility that the sum of values is k. Define the generating function

f(x) =
∞∑
k=1

pkx
k =

(x+ x2 + x3 + x4 + x5 + x6

6

)n
.

(The last equality can be easily proved by induction.)

Our goal is to compute the sum
∞∑
k=1

p5k. Let ε = cos
2π

5
+ i sin

2π

5
; be

the first 5th root of unity. Then

∞∑
k=1

p5k =
f(1) + f(ε) + f(ε2) + f(ε3) + f(ε4)

5
.

Obviously f(1) = 1, and f(εj) =
εjn

6n
for j = 1, 2, 3, 4. This implies that
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f(ε) +f(ε2) +f(ε3) +f(ε4) is
4

6n
if n is divisible by 5, otherwise it is

−1

6n
.

Thus,
∞∑
k=1

p5k is
1

5
+

1

5.6n
if n is divisible by 5, otherwise it is

1

5
− 1

5.6n
.

Problem 3.

The inequality

0 ≤ x3 − 3

4
x+

1

4
= (x+ 1)

(
x− 1

2

)2

holds for x ≥ −1.

Substituting x1, . . . , xn, we obtain

0 ≤
n∑
i=1

(
x3
i −

3

4
xi +

1

4

)
=

n∑
i=1

x3
i −

3

4

n∑
i=1

xi +
n

4
= 0− 3

4

n∑
i=1

xi +
n

4
,

so
n∑
i=1

xi ≤
n

3
. Remark. Equailty holds only in the case when n = 9k, k

of the x1, . . . , xn are −1, and 8k of them are
1

2
.

Problem 4. Assume that such a function exists. The initial inequality

can be written in the form f(x)−f(x+y) ≥ f(x)− f 2(x)

f(x) + y
=

f(x)y

f(x) + y
.

Obviously, f is a decreasing function. Fix x > 0 and choose n ∈ N such

that nf(x+ 1) ≥ 1. For k = 0, 1, . . . , n− 1 we have

f
(
x+

k

n

)
− f

(
x+

k + 1

n

)
≥

f(x+ k
n)

nf(x+ k
n) + 1

≥ 1

2n
.

The additon of these inequalities gives f(x + 1) ≥ f(x) − 1

2
. From this

it follows that f(x+ 2m) ≤ f(x)−m for all m ∈ N. Taking m ≥ f(x),

we get a contradiction with the conditon f(x) > 0.

Problem 5. Let S be the set of all words consisting of the letters x, y, z,

and consider an equivalence relation ∼ on S satisfying the following

conditions: for arbitrary words u, v, w ∈ S
(i) uu ∼ u;

(ii) if v ∼ w, then uv ∼ uw and vu ∼ wu.

Show that every word in S is equivalent to a word of length at most

8. (20 points)
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Solution. First we prove the following lemma: If a word u ∈ S

contains at least one of each letter, and v ∈ S is an arbitrary word, then

there exists a word w ∈ S such that uvw ∼ u.

If v contains a single letter, say x, write u in the form u = u1xu2, and

choose w = u2. Then uvw = u1xu2)xu2 = u1((xu2)(xu2)) ∼ u1(xu2) =

u.

In the general case, let the letters of v be a1, . . . , ak. Then one can

choose some words w1, . . . , wk such that (ua1)w1) ∼ u, (ua1a2)w2 ∼
ua1, . . . , (ua1 . . . ak)wk ∼ ua1 . . . ak−1. Then u ∼ ua1w1 ∼ ua1a2w2w1 ∼
· · · ∼ ua1 . . . akwk . . . w1 = uv(wk . . . w1), so w = wk . . . w1 is a good

choice.

Consider now an arbitrary word a, which contains more than 8 digits.

We shall prove that there is a shorter word which is equivalent to a.

If a can be written in the form uvvw, its length can be reduced by

uvvw ∼ uvw. So we can assume that a does not have this form.

Write a in the form a = bcd, where band d are the first and last four

letter of a, respectively. We prove that a ∼ bd.

It is easy to check that b and d contains all the three letters x, y and z,

otherwise their length could be reduced. By the lemma there is a word

e such that b(cd)e ∼ b, and there is a word f such that def ∼ d. Then

we can write

a = bcd ∼ bc(def) ∼ bc(dedef) = (bcde)(def) ∼ bd.

Remark. Of course, it is enough to give for every word of length 9 an

shortest shorter word. Assuming that the first letter is x and the second

is y, it is easy (but a little long) to check that there are 18 words of

length 9 which cannot be written in the form uvvw.

For five of these words there is a 2-step solution, for example

xyxzyzxzy ∼ xyxzyzxzyzy ∼ xyxzyzy ∼ xyxzy.

In the remaining 13 cases we need more steps. The general algorithm

given by the Solution works for these cases as well, but needs also
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very long words. For example, to reduce the length of the word a =

xyzyxzxyz, we have set b = xyzy, c = x, d = zxyz, e = xyxzxzyxyzy, f =

zyxyxzyxzxzxzxyxyzxyz. The longest word in the algorithm was

bcdedef =

= xyzyxzxyzxyxzxzyxyzyzxyzxyxzxzyxyzyzyxyxzyxzxzxzxyxyzxyz,

which is of length 46. This is not the shortest way: reducing the length

of word a can be done for example by the following steps:

xyzyxzxyz ∼ xyzyxzxyzyx ∼ xyzyxzxyzyxyzyz ∼
xyzyxzxyzyxzyxyzyz ∼∼ xyzyxzyxyz ∼ xyzyxyz.

(The last example is due to Nayden Kambouchev from Sofia University.)

Problem 6. Let A = {a1, . . . , ak}. Consider the k-tuples(
exp

2πia1t

n
, . . . , exp

2πiakt

n

)
∈ Ck, t = 0, 1, . . . , n− 1.

Each component is in the unit circle |z| = 1. Split the circle into 6 equal

arcs. This induces a decomposition of the k-tuples into 6k classes. By

the condition k ≤ 1

100
ln we have n > 6k, so there are two k-tuples in

the same class say for t1 < t2. Set r = t2 − t1. Then

Reexp
2πiajr

n
= cos

(2πajt2
n
− 2πajt1

n

)
≥ cos

π

3
=

1

2

for all j, so

|f(r)| ≥ Ref(r) ≥ k

2
.

2.7 Solutions of Olympic 2000

2.7.1 Day 1

Problem 1.

a) Yes.

Proof: Let A = {x ∈ [0, 1] : f(x) > x}. If f(0) = 0 we are done, if

not then A is non-empty (0 is in A) bounded, so it has supremum, say

a. Let b = f(a).
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I. case: a < b. Then, using that f is monotone and a was the sup, we

get b = f(a) ≤ f( (a+b)
2 ) ≤ a+b

2 , which contradicts a < b.

II. case: a > b. Then we get b = f(a) ≥ f(a+b2 ) > a+b
2 contradiction.

Therefore we must have a = b.

b) No. Let, for example,

f(x) = 1− x

2
if x ≤ 1

2

and

f(x) =
1

2
− x

2
if x >

1

2
This is clearly a good counter-example.

Problem 2. Short solution. Let

P (x, y) =
p(x)− p(y)

x− y
= x4 + x3y + x2y2 + xy3 + y4 + 1

and

Q(x, y) =
q(x)− q(y)

x− y
= x4 + x3y + x2y2 + xy3 + y4 + x+ y.

We need those pairs (w, z) which satisfy P (w, z) = Q(w, z) = 0.

From P − Q = 0 we have w + z = 1. Let c = wz. After a short

calculation we obtain c2− 3c+ 2 = 0, which has the solutions c = 1 and

c = 2. From the system w+ z = 1, wz = c we obtain the following pairs:(1±
√

3i

2
,
1∓
√

3i

2

)
and

(1±
√

7i

2
,
1∓
√

7i

2

)
.

Problem 3.

A and B are square complex matrices of the same size and

rank(AB −BA) = 1.

Show that (AB −BA)2 = 0.

Let 0 = AB − BA. Since rankC = 1, at most one eigenvalue of C

is different from 0. Also trC = 0, so all the eigevalues are zero. In the

Jordan canonical form there can only be one 2×2 cage and thus C2 = 0.
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Problem 4.

a)( n∑
i=1

xi√
i

)2
=

n∑
i,j

xixj√
i
√
j
≥

n∑
i=1

xi√
i

i∑
j=1

xi√
j
≥

n∑
i=1

xi√
i
i
xi√
i

=
n∑
i=1

x2
i

b)
∞∑
m=1

1√
m

( ∞∑
i=m

x2
i

)1/2
≤

∞∑
m=1

1√
m

∞∑
i=m

xi√
i−m+ 1

by a)

=
∞∑
i=1

xi

i∑
m=1

1
√
m
√
i−m+ 1

You can get a sharp bound on

sup
i

i∑
m=1

1
√
m
√
i−m+ 1

by checking that it is at most

i+1∫
0

1
√
x
√
i+ 1− x

dx = π

Alternatively you can observe that

i∑
m=1

1
√
m
√
i+ 1−m

= 2

i/2∑
m=1

1
√
m
√
i+ 1−m

≤

≤ 2
1√
i
2

i/2∑
m=1

1√
m
≤ 2

1√
i
2

.2

√
i

2
= 4

Problem 5.

Suppose that e+ f + g = 0 for given idempotents e, f, g ∈ R. Then

g = g2 = (−(e+ f)2 = e+ (ef + fe) + f = (ef + fe)− g,

i.e. ef + fe = 2g, whence the additive commutator

[e, f ] = ef − fe = [e, ef + fe] = 2[e, g] = 2[e,−e− f ] = −2[e, f ],
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i.e. ef = fe (since R has zero characteristic). Thus ef + fe = 2g

becomes ef = g, so that e + f + ef = 0. On multiplying by e, this

yields e + 2ef = 0, and similarly f + 2ef = 0, so that f = −2ef = e,

hence e = f = g by symmetry. Hence, finaly, 3e = e + f + g = 0, i.e.

e = f = g = 0.

For part (i) just omit some of this.

Problem 6.

From the conditions it is obvious that F is increasing and lim
n→∞

bn =∞.

By Lagrange’s theorem and the recursion in (1), for all k ≥ 0 integers

there exists a real number ξ ∈ (ak, ak+1) such that

F (ak+1)− F (ak) = f(ξ)(ak+1 − ak) =
f(ξ)

f(ak)
. (2)

By the monotonity, f(ak) ≤ f(ξ) ≤ f(ak+1), thus

1 ≤ F (ak+1)− F (ak) ≤
f(ak+1)

f(ak)
= 1 +

f(ak+1)− f(ak)

f(ak)
. (3)

Summing (3) for k = 0, . . . , n− 1 and substituting F (bn) = n, we have

F (bn) < n+F (a0) ≤ F (an) ≤ F (bn)+F (a0)+
n−1∑
k=0

f(ak+1)− f(ak)

f(ak)
. (4)

From the first two inequalities we already have an > bn and lim
n→∞

an =∞.

Let ε be an arbitrary positive number. Choose an integer Kε such

that f(aKε) >
2

ε
. If n is sufficiently large, then

F (a0) +
n−1∑
k=0

f(ak+1)− f(ak)

f(ak)
=

=
(
F (a0) +

Kε−1∑
k=0

f(ak+1)− f(ak)

f(ak)

)
+
∑
k=Kε

n− 1
f(ak+1)− f(ak)

f(ak)
< (5)

< Oε(1) +
1

f(aKε)

n−1∑
k=Kε

(f(ak+1)− f(ak)) <

< Oε(1) +
ε

2
(f(an)− f(aKε)) < εf(an).
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Inequalities (4) and (5) together say that for any positive ε, if n is suffi-

ciently large,

F (an)− F (bn) < εf(an).

Again, by Lagrange’s theorem, there is a real number ζ ∈ (bn, an) such

that

F (an)− F (bn) = f(ζ)(an − bn) > f(bn)(an − bn), (6)

thus

f(bn)(an − bn) < εf(an). (7)

Let B be an upper bound for f ′. Apply f(an) < f(bn) + B(an − bn) in

(7):

f(bn)(an − bn) < ε(f(bn) +B(an − bn)),
(f(bn)− εB)(an − bn) < εf(bn). (8)

Due to lim
n→∞

f(bn) =∞, the first factor is positive, and we have

an − bn < ε
f(bn)

f(bn)− εB
< 2ε (9)

for sufficiently large n.

Thus, for arbitrary positive ε we proved that 0 < an − bn < 2ε if n is

sufficiently large.

2.7.2 Day 2

Problem 1.

We start with the following lemma: If a and b be coprime positive

integers then every sufficiently large positive integer m can be expressed

in the form ax+ by with x, y non-negative integers.

Proof of the lemma. The numbers 0, a, 2a, . . . , (b−1)a give a complete

residue system modulo b. Consequently, for any m there exists a 0 ≤
x ≤ b−1 so that ax ≡ m (mod b). If m ≥ (b−1)a, then y = (m−ax)/b,

for which x+ by = m, is a non-negative integer, too.
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Now observe that any dissection of a cube into n smaller cubes may

be refined to give a dissection into n+(ad−1) cubes, for any a ≥ 1. This

refinement is achieved by picking an arbitrary cube in the dissection, and

cutting it into ad smaller cubes. To prove the required result, then, it

suffices to exhibit two relatively prime integers of form ad− 1. In the 2-

dimensional case, a1 = 2 and a2 = 3 give the coprime numbers 22−1 = 3

and 32 − 1 = 8. In the general case, two such integers are 2d − 1 and

(2d − l)d − 1, as is easy to check.

Problem 2. Let (x−α, x+α) ⊂ [0, 1] be an arbitrary non-empty open

interval. The function f is not monoton in the intervals [x − α, x] and

[x, x + α], thus there exist some real numbers x − α ≤ p < q ≤ x, x ≤
r < s ≤ x+ α so that f(p) > f(q) and f(r) < f(s).

By Weierstrass’ theorem, f has a global minimum in the interval

[p, s]. The values f(p) and f(s) are not the minimum, because they are

greater than f(q) and f(s), respectively. Thus the minimum is in the

interior of the interval, it is a local minimum. So each nonempty interval

(x− α, x+ α) ⊂ [0, 1] contains at least one local minimum.

Problem 3. The statement is not true if p is a constant polynomial.

We prove it only in the case if n is positive.

For an arbitrary polynomial q(z) and complex number c, denote by

µ(q, c) the largest exponent α for which q(z) is divisible by (z − c)α.

(With other words, if c is a root of q, then µ(q, c) is the root’s multiplicity.

Otherwise 0.)

Denote by S0 and S1 the sets of complex numbers z for which p(z) is

0 or 1, respectively. These sets contain all roots of the polynomials p(z)

and p(z)− 1, thus ∑
c∈S0

µ(p, c) =
∑
c∈S1

µ(p− 1, c) = n. (1)

The polynomial p′ has at most n − 1 roots (n > 0 is used here). This
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implies that ∑
c∈S0∪S1

µ(p′, c) ≤ n− 1. (2)

If p(c) = 0 or p(c)− 1 = 0, then

µ(p, c)− µ(p′c) = 1 or µ(p− 1, c)− µ(p′c) = 1, (3)

respectively. Putting (1), (2) and (3) together we obtain

|S0|+ |S1| =
∑
c∈S0

(µ(p, c)− µ(p′, c)) +
∑
c∈S1

(µ(p− 1, c)− µ(p′, c)) =

=
∑
c∈S0

µ(p, c) +
∑
c∈S1

µ(p− 1, c)−
∑

c∈S0∪S1

µ(p′, c) ≥ n+ n− (n− 1) = n+ 1.

Problem 4.

a) Without loss of generality, we can assume that the point A2 is the

origin of system of coordinates. Then the polynomial can be presented

in the form

y = (a0x
4 + a1x

3 + a2x
2 + a3x+ a4)x

2 + a5x,

where the equation y = a5x determines the straight line A1A3. The

abscissas of the points A1 and A3 are −a and a, a > 0, respectively.

Since −a and a are points of tangency, the numbers −a and a must be

double roots of the polynomial a0x
4 + a1x

3 + a2x
2 + a3x+ a4. It follows

that the polynomial is of the form

y = a0(x
2 − a2)2 + a5x.

The equality follows from the equality of the integrals

0∫
−a

a0(x
2 − a2)x2dx =

a∫
0

a0(x
2 − a2)x2dx

due to the fact that the function y = a0(x
2 − a2) is even.

b) Without loss of generality, we can assume that a0 = 1. Then the

function is of the form

y = (x+ a)2(x− b)2x2 + a5x,



2.7. Solutions of Olympic 2000 103

where a and b are positive numbers and b = ka, 0 < k < ∞. The areas

of the figures at the segments A1A2 and A2A3 are equal respectively to

0∫
−a

(x+ a)2(x− b)2x2dx =
a7

210
(7k2 + 7k + 2)

and
b∫

0

(x+ a)2(x− b)2x2dx =
a7

210
(2k2 + 7k + 7)

Then

K = k52k2 + 7k + 7

7k2 + 7k + 2
.

The derivative of the function f(k) =
2k2 + 7k + 7

7k2 + 7k + 2
is negative for 0 <

k < ∞. Therefore f(k) decreases from
7

2
to

2

7
when k increases from 0

to ∞. Inequalities
2

7
<

2k2 + 7k + 7

7k2 + 7k + 2
<

7

2
imply the desired inequalities.

Problem 5.

First solution. First, if we assume that f(x) > 1 for some xR+,

setting y =
x

f(x)− 1
gives the contradiction f(x) = 1. Hence f(x) ≤ 1

for each x ∈ R+, which implies that f is a decreasing function.

If f(x) = 1 for some x ∈ R+, then f(x + y) = f(y) for each y ∈ R+,

and by the monotonicity of f it follows that f ≡ 1.

Let now f(x) < 1 for each x ∈ R+. Then f is strictly decreasing

function, in particular injective. By the equalities

f(x)f(yf(x)) = f(x+ y) =

= f(yf(x) +x+ y(1− f(x))) = f(yf(x))f((x+ y(1− f(x)))f(yf(x)))

we obtain that x = (x+ y(1− f(x)))f(yf(x)). Setting x = 1, z = xf(1)

and a =
1− f(1)

f(1)
, we get f(z) =

1

1 + az
.

Combining the two cases, we conclude that f(x) =
1

1 + ax
for each
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x ∈ R+, where a ≥ 0. Conversely, a direct verification shows that the

functions of this form satisfy the initial equality.

Second solution. As in the first solution we get that f is a decreasing

function, in particular differentiable almost everywhere. Write the initial

equality in the form

f(x+ y)− f(x)

y
= f 2(x)

f(yf(x))− 1

yf(x)
.

It follows that if f is differentiable at the point x ∈ R+, then there

exists the limit lim
z→0+

f(z)− 1

z
=: −a. Therefore f ′(x) = −af 2(x) for

each x ∈ R+, i.e.
( 1

f(x)

)′
= a, which means that f(x) =

1

ax+ b
.

Substituting in the initial relaton, we find that b = 1 and a ≥ 0.

Problem 6. First we prove that for any polynomial q and m × m

matrices A and B, the characteristic polinomials of q(eAB) and q(eBA)

are the same. It is easy to check that for any matrix X, q(eX) =
∞∑
n=0

cnX
n

with some real numbers cn which depend on q. Let

C =
∞∑
n=1

cn.(BA)n−1B =
∞∑
n=1

cn.B(AB)n−1.

Then q(eAB) = c0I +AC and q(eBA) = c0I +CA. It is well-known that

the characteristic polynomials of AC and CA are the same; denote this

polynomial by f(x). Then the characteristic polynomials of matrices

q(eAB) and q(eBA) are both f(x− c0).
Now assume that the matrix p(eAB) is nilpotent, ie. (p(eAB))k = 0 for

some positive integer k. Chose q = pk. The characteristic polynomial

of the matrix q(AB) = 0 is xm, so the same holds for the matrix q(eBA).

By the theorem of Cayley and Hamilton, this implies that (q(eBA))m =

(p(eBA))km = 0. Thus the matrix q(eBA) is nilpotent, too.
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2.8 Solutions of Olympic 2001

2.8.1 Day 1

Problem 1. Since there are exactly n rows and n columns, the choice

is of the form

{(j, σ(j) : j = 1, . . . , n}

where σ ∈ Sn is a permutation. Thus the corresponding sum is equal to

n∑
j=1

n(j − 1) + σ(j) =
n∑
j=1

nj −
n∑
j=1

n+
n∑
j=1

σ(j)

= n
n∑
j=1

j −
n∑
j=1

n+
n∑
j=1

j = (n+ 1)
n(n+ 1)

2
− n2 =

n(n2 + 1)

2
.

which shows that the sum is independent of σ.

Problem 2.

1. There exist integers u and v such that us+ vt = 1. Since ab = ba,

we obtain

ab = (ab)us+vt = (ab)us((ab)t)v = (ab)use = (ab)us = aus(bs)u = ause = aus.

Therefore, br = ebr = arbr = (ab)r = ausr = (ar)us = e. Since xr+ys = 1

for suitable integers x and y,

b = bxr+ys = (br)x(bs)y = e.

It follows similarly that a = e as well.

2. This is not true. Let a = (123) and b = (34567) be cycles of the

permutation group S7 of order 7. Then ab = (1234567) and a3 = b5 =

(ab)7 = e.

Problem 3.

lim
t→1−0

(1− t)
∞∑
n=1

tn

1 + tn
= lim

t→1−0

1− t
−ln t

(−ln t)
∞∑
n=1

tn

1 + tn
=

= lim
t→1−0

(−ln t)
∞∑
n=1

1

1 + e−nln t
= lim

h→+0
h
∞∑
n=1

1

1 + enh
=

∞∫
0

dx

1 + ex
= ln 2.
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Problem 4. Let p(x) = (x−1)kr(x) and εj = e1πij/q (j = 1, 2, . . . , q−1).

As is well-known, the polynomial xq−1+xq−2+· · ·+x+1 = (x−ε1) . . . (x−
εq−1) is irreducible, thus all ε1, . . . , εq−1 are roots of r(x), or none of them.

Suppose that none of ε1, . . . , εq−1 is a root of r(x). Then
∏q−1

j=1 r(εj) is

a rational integer, which is not 0 and

(n+ 1)q−1 ≥
q−1∏
j=1

|p(εj)| =
∣∣∣ q−1∏
j=1

(1− εj)k
∣∣∣∣∣∣ q−1∏
j=1

r(εj)
∣∣∣ ≥

≥
∣∣∣ q−1∏
j=1

(1− εj)
∣∣∣k = (1q−1 + 1q−2 + · · ·+ 11 + 1)k = qk.

This contradicts the condition
q

ln q
<

k

ln (n+ 1)
.

Problem 5.

The statement will be proved by induction on n. For n = 1, there is

nothing to do. In the case n = 2, write A =
[
a b
c d

]
. If b 6= 0, and c 6= 0

or b = c = 0 then A is similar to[
1 0
a/b 1

] [
a b
c d

] [
1 0
−a/b 1

]
=

[
0 b

c− ad/b a+ d

]
or [

1 −a/c
0 1

] [
a b
c d

] [
1 a/c
0 1

]
=

[
0 b− ad/c
c a+ d

]
respectively. If b = c = 0 and a 6= d, then A is similar to[

1 1
0 1

] [
a 0
0 d

] [
1 −1
0 1

]
=
[
0 d− a
0 d

]
,

and we can perform the step seen in the case b 6= 0 again.

Assume now that n > 3 and the problem has been solved for all

n′ < n. Let A =

[
A′ ∗
∗ β

]
n

, where A′ is (n− 1)× (n− 1) matrix. Clearly

we may assume that A′ 6= λ′I, so the induction provides a P with, say,

P−1A′P =
[
0 ∗
∗ α

]
n−1

. But then the matrix

B =

[
P−1 0

0 1

] [
A′ ∗
∗ β

] [
P 0
0 1

]
=

[
P−1A′P ∗
∗ β

]
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is similar to A and its diagonal is (0, 0, . . . , 0, α, β). On the other hand,

we may also view B as
[
0 ∗
∗ C

]
, where C is an (n− 1)× (n− 1) matrix

with diagonal (0, . . . , 0, α, β). If the inductive hypothesis is applicable

to C, we would have Q−1CQ = D, with D =
[
0 ∗
∗ γ

]
n−1

so that finally

the matrix

E =

[
1 0
0 Q−1

]
.B.
[
1 0
0 Q

]
=

[
1 0
0 Q−1

] [
0 ∗
∗ C

] [
1 0
0 Q

]
=
[
0 ∗
∗ D

]
is similar to A and its diagonal is (0, 0, . . . , 0, γ), as required.

The inductive argument can fail only when n−1 = 2 and the resulting

matrix applying P has the form

P−1AP =

[
0 a b
c d 0
e 0 d

]
where d 6= 0. The numbers a, b, c, e cannot be 0 at the same time. If,

say, b 6= 0, A is similar to[
1 0 0
0 1 0
1 0 1

][
0 a b
c d 0
e 0 d

][
1 0 0
0 1 0
−1 0 1

]
=

[ −b a b
c d 0

e− b− d a b+ d

]
.

Performing half of the induction step again, the diagonal of the resulting

matrix will be (0, d− b, d+ b) (the trace is the same) and the induction

step can be finished. The cases a 6= 0, c 6= 0 and e 6= 0 are similar.

Problem 6.

Let 0 < ε < A be an arbitrary real number. If x is sufficiently large

then f(x) > 0, g(x) > 0, |a(x)− A| < ε, |b(x)−B| < ε and

B − ε < b(x) =
f ′(x)

g′(x)
+ a(x)

f(x)

g(x)
<
f ′(x)

g′(x)
+ (A+ ε)

f(x)

g(x)
<

<
(A+ ε)(A+ 1)

A
· f
′(x)(g(x))A + A.f(x).(g(x))A−1.g′(x)

(A+ 1).(g(x))A.g′(x)
=

=
(A+ ε)(A+ 1)

A
· (f(x).(g(x))A)′

((g(x))A+1)′
,

(1)

thus
(f(x).(g(x))A)′

((g(x))A+1)′
>

A(B − ε)
(A+ ε)(A+ 1)

. (2)
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It can be similarly obtained that, for sufficiently large x,

(f(x).(g(x))A)′

((g(x))A+1)′
<

A(B + ε)

(A− ε)(A+ 1)
. (3)

From ε→ 0, we have

lim
x→∞

(f(x).(g(x))A)′

((g(x))A+1)′
=

B

A+ 1
.

By l’Hospital’s rule this implies

lim
x→∞

f(x)

g(x)
= lim

x→∞

f(x).(g(x))A

(g(x))A+1 =
B

A+ 1
.

2.8.2 Day 2

Problem 1.

Multiply the left hand side polynomials. We obtain the following

equalities:

a0b0 = 1, a0b1 + a1b0 = 1, . . .

Among them one can find equations

a0 + a1bs−1 + a2bs−2 + · · · = 1

and

b0 + b1ar−1 + b2ar−2 + · · · = 1.

From these equations it follows that a0, b0 ≤ 1. Taking into account that

a0b0 = 1 we can see that a0 = b0 = 1.

Now looking at the following equations we notice that all a′s must be

less than or equal to 1. The same statement holds for the b′s. It follows

from a0b1 + a1b0 = 1 that one of the numbers a1, b1 equals 0 while the

other one must be 1. Follow by induction.

Problem 2. Obviously a2 =
√

2−
√

2 <
√

2.

Since the function f(x) =
√

2−
√

4− x2 is increasing on the interval

[0, 2] the inequality a1 > a2 implies that a2 > a3. Simple induction ends
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the proof of monotonicity of (an). In the same way we prove that (bn)

decreases (just notice that

g(x) =
2x

2 +
√

4 + x2
=

2

2
x +

√
1 + 4

x2

.

It is a matter of simple manipulation to prove that 2f(x) > x for all

x ∈ (0, 2), this implies that the sequence (2nan) is strictly increasing.

The inequality 2g(x) < x for x ∈ (0, 2) implies that the sequence (2nbn)

strictly decreases. By an easy induction one can show that a2
n =

4b2

4 + b2n
for positive integers n. Since the limit of the decreasing sequence (2nbn)

of positive numbers is finite we have

lim 4na2
n = lim

4.4nb2n
4 + b2n

= lim 4nb2n.

We know already that the limits lim 2nan and lim 2nbn are equal. The first

of the two is positive because the sequence (2nan) is strictly increasing.

The existence of a number C follows easily from the equalities

2nbn−2nan =
(

4nb2n−
4n+1b2n
4 + b2n

)
/(2nbn+ 2nan) =

(2nbn)
4

4 + b2n
· 1

4n
· 1

2n(bn + an)

and from the existence of positive limits lim 2nbn and lim 2nan.

Remark. The last problem may be solved in a much simpler way by

someone who is able to make use of sine and cosine. It is enough to

notice that an = 2 sin
π

2n+1 and bn = 2tan
π

2n+1 .

Problem 3.

The unit sphere in Rn is defined by

Sn−1 =
{

(x1, . . . , xn) ∈ Rn
∣∣∣ n∑
k=1

x2
k = 1

}
.

The distance between the points X = (x1, . . . , xn) and Y = (y1, . . . , yn)

is:

d2(X, Y ) =
n∑
k=1

(xk − yk)2.
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We have

d(X, Y ) >
√

2⇔ d2(X, Y ) > 2

⇔
n∑
k=1

x2
k +

n∑
k=1

y2
k + 2

n∑
k=1

xkyk > 2

⇔
n∑
k=1

xkyk < 0

Taking account of the symmetry of the sphere, we can suppose that

A1 = (−1, 0, . . . , 0).

For X = A1,
n∑
k=1

xkyk < 0 implies y1 > 0, ∀Y ∈Mn.

Let X = (x1, X), Y = (y1, Y ) ∈Mn\{A1}, X, Y ∈ Rn−1.

We have
n∑
k=1

xkyk < 0 ⇒ x1y1 +
n−1∑
k=1

xkyk < 0 ⇔
n−1∑
k=1

x′ky
′
k < 0,

where

x′k =
xk√∑
xk

2
, y′k =

yk√∑
yk

2
.

therefore

(x′1, . . . , x
′
n−1), (y

′
1, . . . , y

′
n−1) ∈ Sn−2

and verifies
n∑
k=1

xkyk < 0.

If an is the search number of points in Rn we obtain an ≤ 1 + an−1

and a1 = 2 implies that an ≤ n+ 1.

We show that an = n+ 1, giving an example of a set Mn with (n+ 1)

elements satisfying the conditions of the problem.

A1 = (−1, 0, 0, 0, . . . , 0, 0)

A2 =
(1

n
,−c1, 0, 0, . . . , 0, 0

)
A3 =

(1

n
,

1

n− 1
· c1,−c2, 0, . . . , 0, 0

)
A4 =

(1

n
,

1

n− 1
· c1,

1

n− 1
· c2,−c3, . . . , 0, 0

)
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An−1 =
(1

n
,

1

n− 1
· c1,

1

n− 2
· c2,

1

n− 3
· c3, . . . ,−cn−2, 0

)
An =

(1

n
,

1

n− 1
· c1,

1

n− 2
· c2,

1

n− 3
· c3, . . . ,

1

2
· cn−2,−cn−1

)
An+1 =

(1

n
,

1

n− 1
· c1,

1

n− 2
· c2,

1

n− 3
· c3, . . . ,

1

2
· cn−2, cn−1

)
where

ck =

√(
1 +

1

n

)(
1− 1

n− k + 1

)
, k = 1, n− 1.

We have
n∑
k=1

xkyk = −1

n
< 0 and

n∑
k=1

x2
k = 1, ∀X, Y ∈ {A1, . . . , An+1}.

These points are on the unit sphere in Rn and the distance between any

two points is equal to

d =
√

2

√
1 +

1

n
>
√

2.

Remark. For n = 2 the points form an equilateral triangle in the unit

circle; for n = 3 the four points from a regular tetrahedron and in Rn

the points from an n dimensional regular simplex.

Problem 4.

We will only prove (2), since it implies (1). Consider a directed graph

G with n vertices V1, . . . , Vn and a directed edge from Vk to Vl when

ak,l 6= 0. We shall prove that it is acyclic.

Assume that there exists a cycle and take one of minimum length m.

Let j1 < · · · < jm be the vertices the cycle goes through and let σ0 ∈ Sn
be a permutation such that ajk,jσ0(k) 6= 0 for k = 1, . . . ,m. Observe that

for any other σ ∈ Sn we have ajk,jσ(k)
= 0 for some k ∈ {1, . . . ,m},

otherwise we would obtain a different cycle through the same set of

vertices and, consequently, a shorter cycle. Finally

0 = det(ajk,jl)k,l=1,...,m

= (−1)signσ0

m∏
k=1

ajk,jσ0(k) +
∑
σ 6=σ0

(−1)signσ
m∏
k=1

ajk,jσ(k) 6= 0,

which is a contradiction.
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Since G is acyclic there exists a topological ordering i.e. a permutation

(σ ∈ Sn such that k < l whenever there is an edge from Vσ(k) to Vσ(l). It

is easy to see that this permutation solves the problem.

Problem 5. Suppose that there exists a function satisfying the inequal-

ity. If f(f(x)) ≤ 0 for all x, then f is a decreasing function in view

of the inequalities f(x + y) ≥ f(x) + yf(f(x)) ≥ f(x) for any y ≤ 0.

Since f(0) > 0 ≥ f(f(x)), it implies f(x) > 0 for all x, which is a

contradiction. Hence there is a z such that f(f(z)) > 0. Then the in-

equality f(z + x) ≥ f(z) + xf(f(z)) shows that lim
x→∞

f(x) = +∞ and

therefore f
x→∞

(f(x)) = +∞. In particular, there exist x, y > 0 such that

f(x) ≥ 0, f(f(x)) > 1, y ≥ x+ 1

f(f(x))− 1
and f(f(x + y + 1)) ≥ 0. Then

f(x+ y) ≥ f(x) + yf(f(x)) ≥ x+ y + 1 and hence

f(f(x+ y)) ≥ f(x+ y + 1) + (f(x+ y)− (x+ y + 1))f(f(x+ y + 1)) ≥
≥ f(x+ y + 1) ≥ f(x+ y) + f(f(x+ y)) ≥
≥ f(x) + yf(f(x)) + f(f(x+ y)) > f(f(x+ y)).

This contradiction completes the solution of the problem.

Problem 6. We prove that g(ϑ) = | sinϑ|| sin(2ϑ)|1/2 attains its max-

imum value (
√

3
2 )3/2 at points 2kπ

3 (where k is a positive integer). This

can be seen by using derivatives or a classical bound like

|g(ϑ)| = | sinϑ|| sin(2ϑ)|1/2 =

√
2

4
√

3

(
4

√
| sinϑ|.| sinϑ|.| sinϑ|.|

√
3 cosϑ|

)2

≤
√

2
4
√

3
· 3 sin2 ϑ+ 3 cos2 ϑ

4
=
(√3

2

)3/2
.

Hence ∣∣∣ fn(ϑ)

fn(π/3)

∣∣∣ =

=
∣∣∣ g(ϑ).g(2ϑ)1/2.g(4ϑ)3/4 · · · g(2n−1ϑ)E

g(π/3).g(2π/3)1/2.g(4π/3)3/4 · · · g(2n−1π/3)E

∣∣∣ · ∣∣∣ sin(2nϑ)

sin(2nπ/3)

∣∣∣1−E/2
≤
∣∣∣ sin(2nϑ)

sin(2nπ/3)

∣∣∣1−E/2 ≤ ( 1√
3/2

)1−E/2
≤ 2√

3
.

where E = 2
3(1− (−1

2)n). This is exactly the bound we had to prove.
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2.9 Solutions of Olympic 2002

2.9.1 Day 1

Problem 1. First we show that the standard parabola with vertex V

contains point A if and only if the standard parabola with vertex s(A)

contains point s(V ).

Let A = (a, b) and V = (v, w). The equation of the standard parabola

with vertex V = (v, w) is y = (x− v)2 +w, so it contains point A if and

only if b = (a − v)2 + w. Similarly, the equation of the parabola with

vertex s(A) = (a,−b) is y = (x−a)2−b; it contains point s(V ) = (v,−w)

if and only if −w = (v−a)2−b. The two conditions are equivalent. Now

assume that the standard parabolas with vertices V1 and V2, V1 and V3, V2

and V3 intersect each other at points A3, A2, A1, respectively. Then, by

the statement above, the standard parabolas with vertices s(A1) and

s(A2), S(A1) and s(A3), s(A2) and S(A3) intersect each other at points

V3, V2, V1, respectively, because they contain these points.

Problem 2. Assume that there exists such a function. Since f ′(x) =

f(f(x)) > 0, the function is strictly monotone increasing.

By the monotonity, f(x) > 0 implies f(f(x)) > f(0) for all x. Thus,

f(0) is a lower bound for f ′(x), and for all x < 0 we have f(x) < f(0) +

x.f(0) = (1 +x)f(0). Hence, if x ≤ −1 then f(x) ≤ 0, contradicting the

property f(x) > 0.

So such function does not exist.

Problem 3. Let n be a positive integer and let

ak =
1(
n
k

) , bk = 2k−n, for k = 1, 2, . . . , n.

Show that
a1 − b1

1
+
a2 − b2

2
+ · · ·+ an − bn

n
= 0. (1)

Solution. Since k
(
n
k

)
= n

(
n−1
k−1

)
for all k ≥ 1, (1) is equivalent to

2n

n

[ 1(
n−1

0

) +
1(
n−1

1

) + · · ·+ 1(
n−1
n−1

)] =
21

1
+

22

2
+ · · ·+ 2n

n
. (2)
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We prove (2) by induction. For n = 1, both sides are equal to 2.

Assume that (2) holds for some n. Let

xn =
2n

n

[ 1(
n−1

0

) +
1(
n−1

1

) + · · ·+ 1(
n−1
n−1

)];
then

xn+1 =
2n+1

n+ 1

n∑
k=0

1(
n
k

) =
2n

n+ 1

(
1 +

n−1∑
k=0

( 1(
n
k

) +
1(
n
k+1

))+ 1
)

=

=
2n

n+ 1

n−1∑
k=0

n−k
n + k+1

n(
n−1
k

) +
2n+1

n+ 1
=

2n

n

n−1∑
k=0

1(
n−1
k

) +
2n+1

n+ 1
= xn +

2n+1

n+ 1
.

This implies (2) for n+ 1.

Problem 4. If for some n > m the equality pm = pn holds then Tp is

a finite set. Thus we can assume that all points p0, p1, . . . are distinct.

There is a convergent subsequence pnk and its limit q is in Tp. Since f is

continuous pnk+1 = f(pnk)→ f(q), so all, except for finitely many, points

pn are accumulation points of Tp. Hence we may assume that all of them

are accumulation points of Tp. Let d = sup{|pm−pn| : m,n ≥ 0}. Let δn

be positive numbers such that
∞∑
n=0

δn <
d

2
. Let In be an interval of length

less than δn centered at pn such that there are there are infinitely many

k′s such that pk /∈
n
∪
j=0
Ij, this can be done by induction. Let n0 = 0

and nm+1 be the smallest integer k ¿ nm such that pk /∈
nm∪
j=0
Ij. Since

Tp is closed the limit of the subsequence (pnm) must be in Tp but it is

impossible because of the definition of I ′ns, of course if the sequence (pnm)

is not convergent we may replace it with its convergent subsequence. The

proof is finished.

Remark. If Tp = {p1, p2, . . .} and each pn is an accumulation point

of Tp, then Tp is the countable union of nowhere dense sets (i.e. the

single-element sets {pn}). If T is closed then this contradicts the Baire

Category Theorem.

Problem 5.
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a. It does not exist. For each y the set {x : y = f(x)} is either empty

or consists of 1 point or is an interval. These sets are pairwise disjoint,

so there are at most count ably many of the third type.

b. Let f be such a map. Then for each value y of this map there is

an xo such that y = f(x) and f ′(x) = 0, because an uncountable set

{x : y = f(x)} contains an accumulation point x0 and clearly f ′(x0) = 0.

For every ε > 0 and every x0 such that f ′(x0) = a there exists an open

interval Ix0
such that if x ∈ Ix0

then |f ′(x)| < ε. The union of all

these intervals Ix0
may be written as a union of pairwise disjoint open

intervals Jn. The image of each Jn is an interval (or a point) of length

< ε length (Jn) due to Lagrange Mean Value Theorem. Thus the image

of the interval [0, 1] may be covered with the intervals such that the sum

of their lengths is ε.1 = ε. This is not possible for ε < 1.

Remarks. 1. The proof of part b is essentially the proof of the easy

part of A. Sard’s theorem about measure of the set of critical values of

a smooth map.

2. If only continuity is required, there exists such a function, e.g. the

first co-ordinate of the very well known Peano curve which is a continuous

map from an interval onto a square.

Problem 6.

Lemma 1. Let (an)n≥0 be a sequence of non-negative numbers such

that a2k − a2k+1 ≤ a2
k, a2k+1 − a2k+2 ≤ akak+1 for any k ≥ 0 and

lim supnan <
1

4
. Then lim sup n

√
an < 1.

Proof. Let cl = supn≥2l(n + 1)an for l ≥ 0. We will show that

cl+1 ≤ 4c2l . Indeed, for any integer n ≥ 2l+1 there exists an integer

k ≥ 2l such that n = 2k or n = 2k + 1. In the first case there is

a2k − a2k+1 ≤ a2
k ≤

c2l
(k + 1)2 ≤

4c2l
2k + 1

− 4c2l
2k + 2

, whereas in the second

case there is a2k+1−a2k+2 ≤ akak+1 ≤
c2l

(k + 1)(k + 2)
≤ 4c2l

2k + 2
− 4c2l

2k + 3
.

Hence a sequence (an −
4c2l
n+ 1

)n≥2l+1 is non-decreasing and its terms
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are non-positive since it converges to zero. Therefore an ≤
4c2l
n+ 1

for n ≥

2l+1, meaning that c2l+1 ≤ 4c2l . This implies that a sequence ((4cl)
2−l)l≥0

is nonincreasing and therefore bounded from above by some number

q ∈ (0, 1) since all its terms except finitely many are less than 1. Hence

cl ≤ q2l for l large enough. For any n between 2l and 2l+1 there is

an ≤
cl

n+ 1
≤ q2l ≤ (

√
q)n yielding lim sup n

√
an ≤

√
q < 1, yielding

lim sup n
√
an ≤

√
1 < 1, which ends the proof.

Lemma 2. Let T be a linear map from Rn into itself. Assume that

lim supn ‖ T n+1 − T n ‖< 1

4
. Then lim sup ‖ T n+1 − T n ‖1/n< 1. In

particular T n converges in the operator norm and T is power bounded.

Proof. Put an =‖ T n+1 − T n ‖. Observe that

T k+m+1 − T k+m = (T k+m+2 − T k+m+1)− (T k+1 − T k)(Tm+1 − Tm)

implying that ak+m ≤ ak+m+1 + akam. Therefore the sequence (am)m≥0

satisfies assumptions of Lemma 1 and the assertion of Proposition 1

follows.

Remarks. 1. The theorem proved above holds in the case of an

operator T which maps a normed space X into itself, X does not have

to be finite dimensional.

2. The constant
1

4
in Lemma 1 cannot be replaced by any greater num-

ber since a sequence an =
1

4n
satisfies the inequality ak+m − ak+m+1 ≤

akam for any positive integers k and m whereas it does not have expo-

nential decay.

3. The constant
1

4
in Lemma 2 cannot be replaced by any number

greater that
1

e
. Consider an operator (Tf)(x) = xf(x) on L2([0, 1]).

One can easily check that lim sup ‖ T n+1 − T n ‖= 1

e
, whereas T n does

not converge in the operator norm. The question whether in general

lim supn ‖ T n+1 − T n ‖< ∞ implies that T is power bounded remains

open.
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Remark. The problem was incorrectly stated during the competi-

tion: instead of the inequality ‖ Ak − Ak−1 ‖≤ 1

2002k
, the inequality

‖ Ak −Ak−1 ‖≤ 1

2002n
was assumed. If A =

(
1 ε
0 1

)
then Ak =

(
1 kε
0 1

)
.

Therefore Ak − Ak−1 =
(

0 ε
0 0

)
, so for sufficiently small ε the condition

is satisfied although the sequence (‖ Ak ‖) is clearly unbounded.

2.9.2 Day 2

Problem 1. Adding the second row to the first one, then adding the

third row to the second one, ..., adding the nth row to the (n− l)th, the

determinant does not change and we have

det(A) =

∣∣∣∣∣∣∣∣∣∣

2 −1 +1 . . . ±1 ∓1
−1 2 −1 . . . ∓1 ±1
+1 −1 2 . . . ±1 ∓1
...

...
... . . . ...

...
∓1 ±1 ∓1 . . . 2 −1
±1 ∓1 ±1 . . . −1 2

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

1 1 0 0 . . . 0 0
0 1 1 0 . . . 0 0
0 0 1 1 . . . 0 0
...

...
...

... . . . ...
...

0 0 0 0 . . . 1 1
±1 ∓1 ±1 ∓1 . . . −1 2

∣∣∣∣∣∣∣∣∣∣
.

Now subtract the first column from the second, then subtract the result-

ing second column from the third, ..., and at last, subtract the (n− 1)th

column from the nth column. This way we have

det(A) =

∣∣∣∣∣∣∣∣∣
1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . 1 0
0 0 0 . . . 0 n+ 1

∣∣∣∣∣∣∣∣∣ = n+ 1.

Problem 2. For each pair of students, consider the set of those problems

which was not solved by them. There exist
(200

2

)
= 19900 sets; we have

to prove that at least one set is empty.

For each problem, there are at most 80 students who did not solve it.

From these students at most
(80

2

)
= 3160 pairs can be selected, so the

problem can belong to at most 3160 sets. The 6 problems together can

belong to at most 6.3160 = 18960 sets.

Hence, at least 19900− 18960 = 940 sets must be empty.
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Problem 3. We prove by induction on n that
an
e

and bne are integers, we

prove this for n = 0 as well. (For n = 0, the term 00 in the definition of

the sequences must be replaced by 1.) From the power series of ex, an =

e1 = e and bn = e−1 =
1

e
.

Suppose that for some n ≥ 0, a0, a1, . . . , an and b0, b1, . . . , bn are all

multipliers of e and
1

e
, respectively. Then, by the binomial theorem,

an+1 =
n∑
k=0

(k + 1)n+1

(k + 1)!
=

∞∑
k=0

(k + 1)n

k!
=

∞∑
k=0

n∑
m=0

(
n

m

)
km

k!
=

=
n∑

m=0

(
n

m

) ∞∑
k=0

km

k!
=

n∑
m=0

(
n

m

)
am

and similarly

bn+1 =
n∑
k=0

(−1)k+1 (k + 1)n+1

(k + 1)!
= −

∞∑
k=0

(−1)k
(k + 1)n

k!

= −
∞∑
k=0

(−1)k
n∑

m=0

(
n

m

)
km

k!

= −
n∑

m=0

(
n

m

) ∞∑
k=0

(−1)k
km

k!
= −

n∑
m=0

(
n

m

)
bm.

The numbers an+1 and bn+1 are expressed as linear combinations of the

previous elements with integer coefficients which finishes the proof.

Problem 4. We can assume OA = OB = OC = 1. Intersect the unit

sphere with center O with the angle domains AOB,BOC and COA; the

intersections are ”slices” and their areas are
1

2
γ,

1

2
α and

1

2
β, respectively.

Now project the slices AOC and COB to the plane OAB. Denote by

C ′ the projection of vertex C, and denote by A′ and B′ the reflections of

vertices A and B with center 0, respectively. By the projection, OC ′ < 1.

The projections of arcs AC and BC are segments of ellipses with long

axes AA′ and BB′, respectively. (The ellipses can be degenerate if σ or

τ is right angle.) The two ellipses intersect each other in 4 points; both

half ellipses connecting A and A′ intersect both half ellipses connecting
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B and B′. There exist no more intersection, because two different conics

cannot have more than 4 common points.

The signed areas of the projections of slices AOC and COB are
1

2
α. cos τ and

1

2
β. cosσ respectively. The statement says thet the sum of

these signed areas is less than the area of slice BOA.

There are three significantly different cases with respect to the signs

of cos σ and cos τ (see Figure). If both signs are positive (case (a)),

then the projections of slices OAC and OBC are subsets of slice OBC

without common interior point, and they do not cover the whole slice

OBC; this implies the statement. In cases (b) and (c) where at least

one of the signs is negative, projections with positive sign are subsets of

the slice OBC, so the statement is obvious again.

Problem 5. The direction ⇐ is trivial, since if A = SS
−1

, then

AA = SS
−1

= In.

For the direction ⇒, we must prove that there exists an invertible

matrix S such that AS = S.

Let w be an arbitrary complex number which is not 0. Choosing

S = wA + wIn we have AS = A(wA + wIn) = wIn + wA = S. If S is

singular, then
1

w
S = A−

(w
w

)
In is singular as well, so

w

w
is an eigenvalue

of A. Since A has finitely many eigenvalues and
w

w
can be any complex

number on the unit circle, there exist such w that S is invertible.

Problem 6. Let g(x) = f(x)−f(x1)− < ∇f(x1), x−x1 >. It is obvious

that g has the same properties. Moreover, g(x1) = ∇g(x1) = 0 and, due

to convexity, g has 0 as the absolute minimum at x1. Next we prove that

g(x2) ≥
1

2L
‖ ∇g(x2) ‖2 . (2)
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Let y0 = x2 −
1

L
‖ ∇g(x2) ‖ and y(t) = y0 + t(x2 − y0). Then

g(x2) = g(y0) +

1∫
0

< ∇g(y(t)), x2 − y0 > dt =

= g(y0)+ < ∇g(x2), x2 − y0 > −
1∫

0

< ∇g(x2)−∇g(y(t)), x2 − y0 > dt ≥

≥ 0 +
1

L
‖ ∇g(x2) ‖2 −

1∫
0

‖ ∇g(x2)−∇g(y(t)) ‖ . ‖ x2 − y0 ‖ dt ≥

≥ 1

L
‖ ∇g(x2) ‖2 − ‖ x2 − y0 ‖

1∫
0

L ‖ x2 − g(y) ‖ dt =

=
1

L
‖ ∇g(x2) ‖2 −L ‖ x2 − y0 ‖2

1∫
0

tdt =
1

2L
‖ ∇g(x2) ‖2 .

Substituting the definition of g into (2), we obtain

f(x2)− f(x1)− < ∇f(x1), x2 − x1 >≥
1

2L
‖ ∇f(x2)−∇f(x1) ‖2,

‖ ∇f(x2)−∇f(x1) ‖2≤ 2L < ∇f(x1), x1 − x2 > +2L(f(x2)− f(x1)).
(3)

Exchanging variables x1 and x2, we have

‖ ∇f(x2)−∇f(x1) ‖2≤ 2L < ∇f(x2), x2−x1 > +2L(f(x1)−f(x2)). (4)

The statement (1) is the average of (3) and (4).

2.10 Solutions of Olympic 2003

2.10.1 Day 1

Problem 1.

a) Let bn =
an(

3
2

)n−1 . Then an+1 >
3

2
an is equivalent to bn+1 > bn, thus

the sequence (bn) is strictly increasing. Each increasing sequence has a

finite limit or tends to infinity.
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b) For all α > 1 there exists a sequence 1 = b1 < b2 < . . . which con-

verges to α. Choosing an =
(

3
2

)n−1
bn, we obtain the required sequence

(an).

Problem 2. Let S = a1 + a2 + · · ·+ a51. Then b1 + b2 + · · ·+ b51 = 50S.

Since b1, b2, . . . , b51 is a permutation of a1, a2, . . . , a51, we get 50S = S,

so 49S = 0. Assume that the characteristic of the field is not equal

to 7. Then 49S = 0 implies that S = 0. Therefore bi = −ai for i =

1, 2, . . . , 51. On the other hand, bi = aϕ(i), where ϕ ∈ S51. Therefore, if

the characteristic is not 2, the sequence a1, a2, . . . , a51 can be partitioned

into pairs {ai, aϕ(i)} of additive inverses. But this is impossible, since 51

is an odd number. It follows that the characteristic of the field is 7 or 2.

The characteristic can be either 2 or 7. For the case of 7, x1 = · · · =
x51 = 1 is a possible choice. For the case of 2, any elements can be

chosen such that S = 0, since then bi = −ai = ai.

Problem 3. The minimal polynomial of A is a divisor of 3x3 − x2 −
x − 1. This polynomial has three different roots. This implies that

A is diagonalizable: A = C−lDC where D is a diagonal matrix. The

eigenvalues of the matrices A and D are all roots of polynomial 3x3−x2−
x− 1. One of the three roots is 1, the remaining two roots have smaller

absolute value than 1. Hence, the diagonal elements of Dk, which are

the kth powers of the eigenvalues, tend to either 0 or 1 and the limit

M = limDk is idempotent. Then limAk = C−1MC is idempotent as

well.

Problem 4. Clearly a and b must be different since A and B are disjoint.

Let {a, b} be a solution and consider the sets A,B such that a.A =

b.B. Denoting d = (a, b) the greatest common divisor of a and b, we have

a = d.a1, b = d.b1, (a1, b1) = 1 and a1A = b1B. Thus {a1, b1} is a solution

and it is enough to determine the solutions {a, b} with (a, b) = 1.

If 1 ∈ A then a ∈ a.A = b.B, thus b must be a divisor of a. Similarly,

if 1 ∈ B, then a is a divisor of b. Therefore, in all solutions, one of

numbers a, b is a divisor of the other one.
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Now we prove that if n ≥ 2, then (1, n) is a solution. For each positive

integer k, let f(k) be the largest non-negative integer for which nf(k)|k.

Then let A = {k : f(k) is odd} and B = {k : f(k) is even}. This is a

decomposition of all positive integers such that A = n.B.

Problem 5.

B. We shall prove in two different ways that lim
n→∞

fn(x) = g(0) for

every x ∈ (0, 1]. (The second one is more lengthy but it tells us how to

calculate fn directly from g.)

Proof I. First we prove our claim for non-decreasing g. In this case, by

induction, one can easily see that

1. each fn is non-decrasing as well, and

2. g(x) = f0(x) ≥ f1(x) ≥ f2(x) ≥ · · · ≥ g(0) (x ∈ (0, 1]).

Then (2) implies that there exists

h(x) = lim
n→∞

fn(x) (x ∈ (0, 1]).

Clearly h is non-decreasing and g(0) ≤ h(x) ≤ fn(x) for any x ∈
(0, 1], n = 0, 1, 2, . . .. Therefore to show that h(x) = g(0) for any

x ∈ (0, 1], it is enough to prove that h(1) cannot be greater than g(0).

Suppose that h(1) > g(0). Then there exists a 0 < δ < 1 such that

h(1) > g(δ). Using the definition, (2) and (1) we get

fn+1(1) =

1∫
0

fn(t)dt ≤
δ∫

0

g(t)dt+

1∫
δ

fn(t)dt ≤ δg(δ) + (1− δ)fn(1).

Hence

fn(1)− fn+1(1) ≥ δ(fn(1)− g(δ)) ≥ δ(h(1)− g(δ)) > 0,

so fn(1)→ −∞, which is a contradiction.

Similarly, we can prove our claim for non-increasing continuous func-

tions as well.

Now suppose that g is an arbitrary continuous function on [0, 1]. Let

M(x) = sup
t∈[0,x]

g(t), m(x) = inf
t∈[0,x]

g(t) (x ∈ [0, 1])
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Then on [0, 1] m is non-increasing, M is non-decreasing, both are con-

tinuous, m(x) ≤ g(x) ≤ M(x) and M(0) = m(0) = g(0). Define the

sequences of functions Mn(x) and mn(x) in the same way as fn is de-

fined but starting with M0 = M and m0 = m.

Then one can easily see by induction that mn(x) ≤ fn(x) ≤ Mn(x).

By the first part of the proof, limnmn(x) = m(0) = g(0) = M(0) =

limnMn(x) for any x ∈ (0, 1]. Therefore we must have limn fn(x) = g(0).

Proof II. To make the notation clearer we shall denote the variable of

fj by xj. By definition (and Fubini theorem) we get that

fn+1(xn+1) =
1

xn+1

xn+1∫
0

1

xn

xn∫
0

1

xn−1

xn−1∫
0

· · ·
x2∫

0

1

x1

x1∫
0

g(x0)dx0dx1 . . . dxn

=
1

xn+1

∫ ∫
0≤x0≤x1≤···≤xn≤xn+1

g(x0)
dx0dx1 . . . dxn
x1 . . . xn

=
1

xn+1

xn+1∫
0

g(x0)
(∫ ∫

x0≤x1≤···≤xn≤xn+1

dx1 . . . dxn
x1 . . . xn

)
dx0.

Therefore with the notation

hn(a, b) =

∫ ∫
a≤x1≤···≤xn≤b

dx1 . . . dxn
x1 . . . xn

and x = xn+1, t = x0 we have

fn+1(x) =
1

x

x∫
0

g(t)hn(t, x)dt.

Using that hn(a, b) is the same for any permutation of x1, . . . , xn and the

fact that the integral is 0 on any hyperplanes (xi = xj) we get that

n!hn(a, b) =

∫ ∫
a≤x1,...,xn≤b

dx1 . . . dxn
x1 . . . xn

=

b∫
a

· · ·
b∫

a

dx1 . . . dxn
x1 . . . xn

=
( b∫
a

dx

x

)n
=
(

log
b

a

)n
.



2.10. Solutions of Olympic 2003 124

Therefore

fn+1(x) =
1

x

x∫
0

g(t)
(log (x/t))n

n!
dt.

Note that if g is constant then the definition gives fn = g. This implies

on one hand that we must have

1

x

x∫
0

(log (x/t))n

n!
dt = 1

and on the other hand that, by replacing g by g − g(0), we can suppose

that g(0) = 0.

Let x ∈ (0, 1] and ε > 0 be fixed. By continuity there exists a 0 <

δ < x and an M such that |g(t)| < ε on [0, δ] and |g(t)| ≤ M on [0, 1] .

Since

lim
n→∞

(log (x/δ))n

n!
= 0

there exists an n0 sucht that
log (x/δ)n

n!
< ε whenever n ≥ n0. Then, for

any n ≥ n0, we have

|fn+1(x)| ≤ 1

x

x∫
0

|g(t)|(log (x/t))n

n!
dt

≤ 1

x

δ∫
0

ε
(log (x/t))n

n!
dt+

1

x

x∫
δ

|g(t)|(log (x/δ))n

n!
dt

≤ 1

x

x∫
0

ε
(log (x/t))n

n!
dt+

1

x

x∫
δ

Mεdt

≤ ε+Mε.

Therefore limn f(x) = 0 = g(0).

Problem 6. The polynomial f is a product of linear and quadratic

factors, f(z) =
∏

i(kiz + li).
∏

j(pjz
2 + qjz + rj), with ki, ki, pj, qj ∈ R.

Since all roots are in the left half-plane, for each i, ki and li are of the

same sign, and for each j, pj, qj, rj are of the same sign, too. Hence,
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multiplying f by −1 if necessary, the roots of f don’t change and f

becomes the polynomial with all positive coefficients.

For the simplicity, we extend the sequence of coefficients by an+1 =

an+2 = · · · = 0 and a−1 = a−2 = · · · = 0 and prove the same statement

for −1 ≤ k ≤ n− 2 by induction.

For n ≤ 2 the statement is obvious: ak+1 and ak+2 are positive and at

least one of ak−1 and ak+3 is 0; hence, ak+1ak+2 > akak+3 = 0.

Now assume that n ≥ 3 and the statement is true for all smaller

values of n. Take a divisor of f(z) which has the form z2 + pz+ q where

p and q are positive real numbers. (Such a divisor can be obtained from

a conjugate pair of roots or two real roots.) Then we can write

f(z) = (z2 + pz + q)(bn−2z
n−2 + · · ·+ b1z + b0) = (z2 + pz + q)g(x). (1)

The roots polynomial g(z) are in the left half-plane, so we have bk+1bk+2 <

bkbk+3 for all −1 ≤ k ≤ n − 4. Defining bn−1 = bn = · · · = 0 and

b−1 = b−2 = · · · = 0 as well, we also have bk+1bk+2 ≤ bkbk+3 for all

integer k.

Now we prove ak+1ak+2 > akak+3. If k = −1 or k = n − 2 then

this is obvious since ak+1ak+2 is positive and akak+3 = 0. Thus, assume

0 ≤ k ≤ n− 3. By an easy computation,

ak+1ak+2 − akak+3 =

= (qbk+1 + pbk + bk−1)(qbk+2 + pbk+1 + bk)−
−(qbk + pbk−1 + bk−2)(qbk+3 + pbk+2 + bk+1) =

= (bk−1bk − bk−2bk+1) + p(b2k − bk−2bk+2) + q(bk−1bk+2 − bk−2bk+3)+

+p2(bkbk+1 − bk−1bk+2) + q2(bk+1bk+2 − bkbk+3) + pq(b2k+1 − bk−1bk+3).

We prove that all the six terms are non-negative and at least one is

positive. Term p2(bkbk+1− bk−1bk+2 is positive since 0 ≤ k ≤ n− 3. Also

terms bk−1bk−bk−2bk+1 and q2(bk+1bk+2−bkbk+3) are non-negative by the

induction hypothesis.
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To check the sign of p(b2k − bk−2bk+2) consider

bk−1(b
2
k − bk−2bk+2)

= bk−2(bkbk+1 − bk−1bk+2) + bk(bk−1bk − bk−2bk+1) ≥ 0.

If bk−1 > 0 we can divide by it to obtain b2k − bk−2bk+2 ≥ 0. Otherwise,

if bk−1 = 0, either bk−2 = 0 or bk+2 = 0 and thus b2k − bk−2bk+2 = b2k ≥ 0.

Therefore, p(b2k− bk−2bk+2) ≥ 0 for all k. Similarly, pq(b2k+1− bk−1bk+3) ≥
0.

The sign of q(bk−1bk+2 − bk−2bk+3) can be checked in a similar way.

Consider

bk+1(bk−1bk+2−bk−2bk+3) = bk−1(bk+1bk+2−bkbk+3)+bk+3(bk−1bk−bk−2bk+1) ≥ 0.

If bk+1 > 0, we can divide by it. Otherwise either bk−2 = 0 or bk+3 = 0.

In all cases, we obtain bk−1bk+2 − bk−2bk+3 ≥ 0.

Now the signs of all terms are checked and the proof is complete.

2.10.2 Day 2

Problem 1. We use the fact that
sin t

t
is decreasing in the interval

(0, π) and lim
t→0+0

sin t

t
= 1. For all x ∈ (0, π2 ) and t ∈ [x, 2x] we have

sin 2x

2
x <

sin t

t
< 1, thus

(sin 2x

2x

)m 2x∫
x

tm

tn
<

2x∫
x

sinm t

tn
dt <

2x∫
x

tm

tn
dt,

2x∫
x

tm

tn
dt = xm−n+1

2∫
1

um−ndu.

The factor
(sin 2x

2x

)m
tends to 1. If m−n+1 < 0, the limit of xm−n+1 is

infinity; if m−n+1 > 0 then 0. If m−n+1 = 0 then xm−n+1
2∫
1
um−ndu =
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ln 2. Hence,

lim
x→0+0

2x∫
x

sinm t

tn
dt =

0, m ≥ n
ln 2, n−m = 1
+∞, n−m > 1.

Problem 3. Let b0 /∈ A (otherwise b0 ∈ A ⊂ B, % = inf
a∈A
|a − b0|. The

intersection of the ball of radius %+1 with centre b0 with set A is compact

and there exists a0 ∈ A : |a0 − b0| = %.

Denote by Br(a) = {x ∈ Rn : |x − a| ≤ r} and ∂Br(a) = {x ∈ Rn :

|x−a| = r} the ball and the sphere of center a and radius r, respectively.

If a0 is not the unique nearest point then for any point a on the

open line segment (a0, b0) we have B|a−a0|(a) ⊂ B%(b0) and ∂B|a−a0|(a)∩
∂B%(b0) = {a0}, therefore (a0, b0) ⊂ B and b0 is an accumulation point

of set B.

Problem 4. The condition (i) of the problem allows us to define a

(well-defined) operation * on the set S given by

a ∗ b = c if and only if {a, b, c} ∈ F, where a 6= b.

We note that this operation is still not defined completely (we need to

define a ∗ a), but nevertheless let us investigate its features. At first,

due to (i), for a 6= b the operation obviously satisfies the following three

conditions:

a) a 6= a ∗ b 6= b;

b) a ∗ b = b ∗ a;

c) a ∗ (a ∗ b) = b.

What does the condition (ii) give? It claims that

e’) x∗(a∗c) = x∗y = z = b∗c = (x∗a)∗c for any three different x, a, c,

i.e. that the operation is associative if the arguments are different. Now

we can complete the definition of *. In order to save associativity for

nondifferent arguments, i.e. to make b = a ∗ (a ∗ b) = (a ∗ a) ∗ b hold, we

will add to S an extra element, call it 0, and define

d) a ∗ a = 0 and a ∗ 0 = 0 ∗ a = a.
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Now it is easy to check that, for any a, b, c ∈ S ∪ {0}, (a),(b),(c) and

(d), still hold, and

e) a ∗ b ∗ c := (a ∗ b) ∗ c = a ∗ (b ∗ c).
We have thus obtained that (S ∪ {0}, ∗) has the structure of a finite

Abelian group, whose elements are all of order two. Since the order of

every such group is a power of 2, we conclude that |S∪{0}| = n+1 = 2m

and n = 2m − 1 for some integer m ≥ 1.

Given n = 2m− 1, according to what we have proven till now, we will

construct a family of three-element subsets of S satisfying (i) and (ii).

Let us define the operation * in the following manner:

if a = a0 + 2a1 + · · · + 2m−1am−1 and b = b0 + 2b1 + · · · + 2m−1bm−1,

where ai, bi are either 0 or 1, we put a ∗ b = |a0− b0|+ 2|a1− b1|+ · · ·+
2m−1|am−1 − bm−1|.

It is simple to check that this * satisfies (a),(b),(c) and (e’). Therefore,

if we include in F all possible triples a, b, a ∗ b, the condition (i) follows

from (a),(b) and (c), whereas the condition (ii) follows from (e’)

The answer is: n = 2m − 1.

Problem 5.

a) Let ϕ : Q → N be a bijection. Define g(x) = max{|f(s, t)| : s, t ∈
Q, ϕ(s) ≤ ϕ(x), ϕ(t) ≤ ϕ(x)}. We have f(x, y) ≤ max{g(x), g(y)} ≤
g(x) + g(y).

b) We shall show that the function defined by f(x, y) =
1

|x− y|
for

x 6= y and f(x, x) = 0 satisfies the problem. If, by contradiction there

exists a function g as above, it results, that g(y) ≥ 1

|x− y|
− fx) for

x, y ∈ R, x 6= y; one obtains that for each x ∈ R, lim
y→x

g(y) = ∞. We

show, that there exists no function g having an infinite limit at each

point of a bounded and closed interval [a, b]. For each k ∈ N+ denote

Ak = {x ∈ [a, b] : |g(x)| ≤ k}.
We have obviously [a, b] =

∞
∪
k=1
Ak. The set [a, b] is uncountable, so

at least one of the sets Ak is infinite (in fact uncountable). This set
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Ak being infinite, there exists a sequence in Ak having distinct terms.

This sequence will contain a convergent subsequence (xn)n∈N convergent

to a point x ∈ [a, b]. But lim
y→x

g(y) = ∞ implies that g(xn) → ∞, a

contradiction because |g(xn)| ≤ k,∀n ∈ N.

Second solution for part (b). Let S be the set of all sequences of real

numbers. The cardinality of S is |S| = |R|N0 = 2N
2
0 = 2N0 = |R|. Thus,

there exists a bijection h : R → S. Now define the function f in the

following way. For any real x and positive integer n, let f(x, n) be the

nth element of sequence h(x). If y is not a positive integer then let

f(x, y) = 0. We prove that this function has the required property.

Let g be an arbitrary R → R function. We show that there exist

real numbers x, y such that f(x, y) > g(x)+g(y). Consider the sequence

(n+g(n))∞n=1. This sequence is an element of S, thus (n+g(n))∞n=1 = h(x)

for a certain real x. Then for an arbitrary positive integer n, f(x, n) is

the nth element, f(x, n) = n+ g(n). Choosing n such that n > g(x), we

obtain f(x, n) = n+ g(n) > g(x) + g(n).

Problem 6. Consider the generating function f(x) =
∞∑
n=0

anx
n. By

induction 0 < an ≤ 1, thus this series is absolutely convergent for |x| <
1, f(0) = 1 and the function is positive in the interval [0, 1). The goal is

to compute f(1
2).

By the recurrence formula,

f ′(x) =
∞∑
n=0

(n+ 1)an+1x
n =

∞∑
n=0

n∑
k=0

ak
n− k + 2

xn =

=
∞∑
k=0

akx
k
∞∑
n=k

xn−k

n− k + 2
= f(x)

∞∑
m=0

xm

m+ 2
.
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Then

ln f(x) = ln f(x)− ln f(0) =

x∫
0

f ′

f
=

∞∑
m=0

xm+1

(m+ 1)(m+ 2)
=

=
∞∑
m=1

( xm+1

(m+ 1
− xm+1

(m+ 2)

)
= 1 +

(
1− 1

x

) ∞∑
m=1

xm+1

(m+ 1)
= 1 +

(
1− 1

x

)
ln

1

1− x
,

ln f
(1

x

)
= 1− ln 2,

and thus f
(1

2

)
=
e

2
.

2.11 Solutions of Olympic 2004

2.11.1 Day 1

Problem 1. Let Sn = S∩
(

1
n ,∞

)
for any integer n > 0. It follows from

the inequality that |Sn| < n. Similarly, if we define S−n = S∩(−∞,− 1
n),

then |S−n| < n. Any nonzero x ∈ S is an element of some Sn or S−n,

because there exists an n such that x >
1

n
or x < −1

n
. Then S ⊂

{0} ∪ ∪
n∈N

(Sn ∪ S−n), S is a countable union of finite sets, and hence

countable.

Problem 2. Put Pn(x) = P (P (. . . (P︸ ︷︷ ︸
n

(x)) . . .)). As P1(x) ≥ −1, for

each x ∈ R, it must be that Pn+1(x) = P1(Pn(x)) ≥ −1, for each n ∈ N
and each x ∈ R. Therefore the equation Pn(x) = a, where a < −1 has

no real solutions.

Let us prove that the equation Pn(x) = a, where a > 0, has exactly

two distinct real solutions. To this end we use mathematical induction by

n. If n = 1 the assertion follows directly. Assuming that the assertion

holds for a n ∈ N we prove that it must also hold for n + 1. Since

Pn+1(x) = a is equivalent to P1(Pn(x)) = a, we conclude that Pn(x) =
√
a+ 1 or Pn(x) = −

√
a+ 1. The equation Pn(x) =

√
a+ 1, as

√
a+ 1 >

1, has exactly two distinct real solutions by the inductive hypothesis,

while the equation Pn(x) = −
√
a+ 1 has no real solutions (because
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−
√
a+ 1 < −1). Hence the equation Pn+1(x) = a, has exactly two

distinct real solutions.

Let us prove now that the equation Pn(x) = 0 has exactly n + 1

distinct real solutions. Again we use mathematical induction. If n = 1

the solutions are x = ±1, and if n = 2 the solutions are x = 0 and

x = ±
√

2, so in both cases the number of solutions is equal to n + 1.

Suppose that the assertion holds for some n ∈ N . Note that Pn+2(x) =

P2(Pn(x)) = P 2
n(x)(P 2

n(x) − 2), so the set of all real solutions of the

equation Pn+2 = 0 is exactly the union of the sets of all real solutions

of the equations Pn(x) = 0, Pn(x) =
√

2 and Pn(x) = −
√

2. By the

inductive hypothesis the equation Pn(x) = 0 has exactly n + 1 distinct

real solutions, while the equations Pn(x) =
√

2 and Pn(x) = −
√

2 have

two and no distinct real solutions, respectively. Hence, the sets above

being pairwise disjoint, the equation Pn+2(x) = 0 has exactly n + 3

distinct real solutions. Thus we have proved that, for each n ∈ N , the

equation Pn(x) = 0 has exactly n+1 distinct real solutions, so the answer

to the question posed in this problem is 2005.

Problem 3.

a) Equivalently, we consider the set

Y = {y = (y1, y2, . . . , yn)|0 ≤ y1, y2, . . . , yn ≤ 1, y1+y2+· · ·+yn = 1} ⊂ Rn

and the image f(Y ) of Y under

f(y) = arcsin y+ arcsin y2 + · · ·+ arcsin yn.

Note that f(Y ) = Sn. Since Y is a connected subspace of Rn and f is

a continuous function, the image f(Y ) is also connected, and we know

that the only connected subspaces of R are intervals. Thus Sn is an

interval.

b) We prove that

n arcsin
1

n
≤ x1 + x2 + · · ·+ xn ≤

π

2
.
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Since the graph of sinx is concave down for x ∈ [0,
π

2
], the chord joining

the points (0, 0) and (
π

2
, 1) lies below the graph. Hence

2x

π
≤ sinx for all x ∈ [0,

π

2
]

and we can deduce the right-hand side of the claim:

2

π
(x1 + x2 + · · ·+ xn) ≤ sinx1 + sinx2 + · · ·+ sinxn = 1.

The value 1 can be reached choosing x1 =
π

2
and x2 = · · · = xn = 0.

The left-hand side follows immediately from Jensen’s inequality, since

sinx is concave down for x ∈ [0,
π

2
] and 0 ≤ x1 + x2 + · · ·+ xn

n
<
π

2

1

n
=

sinx1 + sinx2 + · · ·+ sinxn
n

≤ sin
x1 + x2 + · · ·+ xn

n
.

Equality holds if x1 = · · · = xn = arcsin
1

n
.

Now we have computed the minimum and maximum of interval Sn;

we can conclude that Sn = [n arcsin
1

n
,
π

2
]. Thus ln =

π

2
− n and

lim
n→∞

ln =
π

2
− lim

n→∞

arcsin(1/n)

1/n
=
π

2
− 1.

Problem 4. Define f : M → {−1, 1}, f(X) =

{
−1, if X is white
1, if X is black

.

The given condition becomes
∑
X∈S

f(X) = 0 for any sphere S which passes

through at least 4 points of M . For any 3 given points A,B,C in M ,

denote by S(A,B,C) the set of all spheres which pass through A,B,C

and at least one other point of M and by |S(A,B,C)| the number of

these spheres. Also, denote by
∑

the sum
∑
X∈M

f(X).

We have

0 =
∑

S∈S(A,B,C)

∑
X∈S

f(X) = (|S(A,B,C)| − 1)(f(A) + f(B) + f(C)) +
∑
(1)
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since the values of A,B,C appear |S(A,B,C)| times each and the other

values appear only once.

If there are 3 points A,B,C such that |S(A,B,C)| = 1, the proof is

finished.

If |S(A,B,C)| > 1 for any distinct points A,B,C in M , we will prove

at first that
∑

= 0.

Assume that
∑

> 0. From (1) it follows thatf(A) +f(B) +f(C) < 0

and summing by all
(
n
3

)
possible choices of (A,B,C) we obtain that(

n
3

)∑
< 0, which means

∑
< 0 (contradicts the starting assumption).

The same reasoning is applied when assuming
∑

< 0.

Now, from
∑

= 0 and (1), it follows that f(A) + f(B) + f(C) = 0

for any distinct points A,B,C in M . Taking another point D ∈M , the

following equalities take place

f(A) + f(B) + f(C) = 0

f(A) + f(B) + f(D) = 0

f(A) + f(C) + f(D) = 0

f(B) + f(C) + f(D) = 0

which easily leads to f(A) = f(B) = f(C) = f(D) = 0, which contra-

dicts the definition of f .

Problem 5. We prove a more general statement:

Lemma. Let k, l ≥ 2, let X be a set of
(
k+l−4
k−2

)
real numbers. Then

either X contains an increasing sequence {xi}ki=1 ⊆ X of length k and

|xi+1 − x1| ≥ 2|xi − x1| ∀i = 2, . . . , k − 1,

or X contains a decreasing sequence {xi}li=1 ⊆ X of length l and

|xi+1 − x1| ≥ 2|xi − x1| ∀i = 2, . . . , l − 1.

Proof of the lemma. We use induction on k+ l. In case k = 2 or l = 2

the lemma is obviously true.
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Now let us make the induction step. Let m be the minimal element

of X,M be its maximal element. Let

Xm = {x ∈ X : x ≤ m+M

2
}, XM = {x ∈ X : x >

m+M

2
}.

Since
(
k+l−4
k−2

)
=
(
k+(l−1)−4

k−2

)
+
((k−1)+l−4

(k−1)−2

)
, we can see that either

|Xm| ≥
(

(k − 1) + l − 4

(k − 1)− 2

)
+ 1, or |XM | ≥

(
k + (l − 1)− 4

k − 2

)
+ 1.

In the first case we apply the inductive assumption to Xm and either

obtain a decreasing sequence of length l with the required properties

(in this case the inductive step is made), or obtain an increasing se-

quence {xi}k−1
i=1 ⊆ Xm of length k − 1. Then we note that the sequence

{x1, x2, . . . , xk−1,M} ⊆ X has length k and all the required properties.

In the case |XM | ≥
(
k+(l−1)−4

k−2

)
the inductive step is made in a similar

way. Thus the lemma is proved.

The reader may check that the number
(
k+l−4
k−2

)
+ 1 cannot be smaller

in the lemma.

Problem 6. It is clear that the left hand side is well defined and inde-

pendent of the order of summation, because we have a sum of the type∑
n−4, and the branches of the logarithms do not matter because all

branches are taken. It is easy to check that the convergence is locally

uniform on C\{0, 1}; therefore, f is a holomorphic function on the com-

plex plane, except possibly for isolated singularities at 0 and 1. (We

omit the detailed estimates here.)

The function log has its only (simple) zero at z = 1, so f has a

quadruple pole at z = 1.

Now we investigate the behavior near infinity. We have Re(log (z)) =



2.11. Solutions of Olympic 2004 135

log |z|, hence (with c := log |z|)

|
∑

(log z)−4| ≤
∑
|log z|−4 =

∑
(log |z|+ 2πin)−4 +O(1)

=

∞∫
−∞

(x+ 2πix)−4dx+O(1)

= c−4

∞∫
−∞

(1 + 2πix/c)−4dx+O(1)

= c−3

∞∫
−∞

(1 + 2πit)−4dt+O(1)

≤ α(log |z|)−3

for a universal constant α. Therefore, the infinite sum tends to 0 as

|z| → ∞. In particular, the isolated singularity at ∞ is not essential,

but rather has (at least a single) zero at ∞.

The remaining singularity is at z = 0. It is readily verified that

f(1/z) = f(z) (because log (1/z) = −log (z)); this implies that f has a

zero at z = 0.

We conclude that the infinite sum is holomorphic on C with at most

one pole and without an essential singularity at ∞, so it is a rational

function, i.e. we can write f(z) = P (z)/Q(z) for some polynomials P

and Q which we may as well assume coprime. This solves the first part.

Since j has a quadruple pole at z = 1 and no other poles, we have

Q(z) = (z−1)4 up to a constant factor which we can as well set equal to

1, and this determines P uniquely. Since f(z)→ 0 as z →∞, the degree

of P is at most 3, and since P (0) = 0, it follows that P (z) = z(az2+bz+c)

for yet undetermined complex constants a, b, c.

There are a number of ways to compute the coefficients a, b, c, which

turn out to be a = c = 1
6 , b = 2

3 . Since f(z) = f( lz), it follows easily that

a = c. Moreover, the fact limz→1(z − 1)4f(z) = 1 implies a + b + c = 1

(this fact follows from the observation that at z = 1, all summands can-

cel pairwise, except the principal branch which contributes a quadruple
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pole). Finally, we can calculate

f(−1) = π−4
∑
nodd

n−4 = 2π−4
∑

n≥1odd

n−4

= 2π−4
(∑
n≥1

n−4 −
∑

n≥1even

n−4
)

=
1

48
.

This implies a− b+ c = −1
3 . These three equations easily yield a, b, c.

Moreover, the function f satisfies f(z)+f(−z) = 16f(z2): this follows

because the branches of log (z2) = log ((−z)2) are the numbers 2log (z)

and 2log (−z). This observation supplies the two equations b = 4a and

a = c, which can be used instead of some of the considerations above.

Another way is to compute g(z) =
∑ 1

(log z)2 first. In the same

way, g(z) =
dz

(z − 1)2 . The unknown coefficient d can be computed from

lim
z→1

(z−1)2g(z) = 1; it is d = 1. Then the exponent 2 in the denominator

can be increased by taking derivatives (see Solution 2). Similarly, one

can start with exponent 3 directly.

A more straightforward, though tedious way to find the constants is

computing the first four terms of the Laurent series of f around z = 1.

For that branch of the logarithm which vanishes at 1, for |w| < 1

2
we

have

log (1 + w) = w − w2

2
+
w3

3
− w4

4
+O(|w5|);

after some computation, one can obtain

1

log (1 + w)4 = w−4 + 2w−2 +
7

6
w−2 +

1

6
w−1 +O(1).

The remaining branches of logarithm give a bounded function. So

f(1 + w) = w−4 + 2w−2 +
7

6
w−2 +

1

6
w−1

(the remainder vanishes) and

f(z) =
1 + 2(z − 1) + 7

6(z − 1)2 + 1
6(z − 1)3

(z − 1)4 =
z(z2 + 4z + 1)

6(z − 1)4 .
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Solution 2. From the well-known series for the cotangent function,

lim
N→∞

N∑
k=−N

1

w + 2πi.k
=
i

2
cot

iw

2

and

lim
n→∞

N∑
k=−N

1

log z + 2πi.k
=
i

2
cot

ilog z

2
=
i

2
.i

22i ilog z

2 + 1

22i ilog z

2 − 1

=
1

2
+

1

z − 1
.

Taking derivatives we obtain∑ 1

(log z)2 = −z.
(1

2
+

1

z − 1

)′
=

z

(z − 1)2 ,∑ 1

(log z)3 = −z
2
.
( 1

(z − 1)2

)′
=

z(z + 1)

2(z − 1)3

and ∑ 1

(log z)4 = −z
3

( z(z + 1)

2(z − 1)3

)′
=
z(z2 + 4z + 1)

2(z − 1)4 .

2.11.2 Day 2

Problem 1. Let A =
(
A1

A2

)
and B = (B1B2) where A1, A2, B1, B2 are

2× 2 matrices. Then 1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1

 =

(
A1

A2

)
(B1 B2) =

(
A1B1 A1B2
A2B1 A2B2

)
therefore, A1B1 = A2B2 = I2 and A1B2 = A2B1 = −I2 Then B1 =

A−1
1 , B2 = −A−1

1 and A2 = B−1
2 = −A1. Finally,

BA = (B1 B2)

(
A1

A2

)
= B1A1 +B2A2 = 2I2 =

(
2 0
0 2

)
Problem 2. Let F (x) =

x∫
a

√
f(t)dt and G(x) =

x∫
a

√
g(t)dt. The func-

tions F,G are convex, F (a) = 0 = G(a) and F (b) = G(b) by the hypoth-

esis. We are supposed to show that

b∫
a

√
1 + (F ′(t))2dt ≥

b∫
a

√
1 + (G′(t))2dt
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i.e. The length at the graph of F is ≥ the length of the graph of G. This

is clear since both functions are convex, their graphs have common ends

and the graph of F is below the graph of G - the length of the graph of F

is the least upper bound of the lengths of the graphs of piecewise linear

functions whose values at the points of non-differentiability coincide with

the values of F , if a convex polygon P1 is contained in a polygon P2 then

the perimeter of P1 is ≤ the perimeter of P2.

Problem 3. Considering as vectors, thoose p to be the unit vector

which points into the opposite direction as
n∑
i=1

pi. Then, by the triangle

inequality,

n∑
i=1

|p− pi| ≥
∣∣∣np− n∑

i=1

pi

∣∣∣ = n+
∣∣∣ n∑
i=1

pi

∣∣∣ ≥ n.

Problem 4. We first solve the problem for the special case when the

eigenvalues ofM are distinct and all sums λr+λs are different. Let λr and

λs be two eigenvalues of M and −→v r,
−→v s eigenvectors associated to them,

i.e. M−→v j = λ−→v j for j = r, s. We have M−→v r(
−→v s)

T + −→v r(
−→v s)

TMT =

(M−→v r)(
−→v s)

T +−→v r(M
−→v s)

T = λr
−→v r(
−→v s)

T + λs
−→v r(
−→v s)

T , so −→v r(
−→v s) is

an eigenmatrix of LM with the eigenvalue λr + λs.

Notice that if λr 6= λs then vectors −→u ,−→w , ware linearly independent

and matrices −→u (−→w )T and −→w (−→u T are linearly independent, too. This

implies that the eigenvalue λr + λs is double if r 6= s.

The map LM maps n2-dimensional linear space into itself, so it has

at most n2 eigenvalues. We already found n2 eigenvalues, so there exists

no more and the problem is solved for the special case.

In the general case, matrix M is a limit of matrices M1,M2, . . . such

that each of them belongs to the special case above. By the continuity

of the eigenvalues we obtain that the eigenvalues of LM are

• 2λr with multiplicity m2
r (r = 1, . . . , k);

• λr + λs with multiplicity 2mrms(1 ≤ r < s ≤ k).
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(It can happen that the sums λr+λs are not pairwise different; for those

multiple values the multiplicities should be summed up.)

Problem 5. First we use the inequality

x−1 − 1 ≥ |lnx|, x ∈ (0, 1],

which follows from

(x−1 − 1)|x=1 = |lnx||x=1 = 0,

(x−1 − 1)′ = − 1

x2 ≤ −
1

x
= |lnx|′, x ∈ (0, 1].

Therefore

1∫
0

1∫
0

dxdy

x−1 + |ln y| − 1
≤

1∫
0

1∫
0

dxdy

|lnx|+ |ln y|
=

1∫
0

1∫
0

dxdy

|ln (x.y)|
.

Substituting y =
u

x
, we obtain

1∫
0

1∫
0

dxdy

|ln (x.y)|
=

1∫
0

( 1∫
u

dx

x

) du

|lnu|
=

1∫
0

|lnu| du
|lnu|

= 1.

Solution 2. Substituting s = x−1 − 1 and u = s− ln y,

1∫
0

1∫
0

dxdy

x−1 + |ln y| − 1
=

∞∫
0

∞∫
s

es−u

(s+ 1)2u
duds =

∞∫
0

( u∫
0

es

(s+ 1)2ds
)e−u
u
dsdu.

Since the function
es

(s+ 1)2 is convex,

u∫
0

es

(s+ 1)2ds ≤
u

2

( eu

(u+ 1)2 + 1
)

so
1∫

0

1∫
0

dxdy

x−1 + |ln y| − 1
≤

∞∫
0

u

2

( eu

(u+ 1)2 + 1
)e−u
u
du
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=
1

2

( ∞∫
0

du

(u+ 1)2 +

∞∫
0

e−udu
)

= 1.

Problem 6. The quantity S(Ak−1
n ) has a special combinatorical mean-

ing. Consider an n × k table filled with 0’s and 1’s such that no 2 × 2

contains only 1’s. Denote the number of such fillings by Fnk. The filling

of each row of the table corresponds to some integer ranging from 0 to

2n−1 written in base 2. Fnk equals to the number of k-tuples of integers

such that every two consecutive integers correspond to the filling of n×2

table without 2× 2 squares filled with 1’s.

Consider binary expansions of integers i and jinin−1 . . . i1 and jnjn−1 . . . j1.

There are two cases:

1. If injn = 0 then i and j can be consecutive iff in−1 . . . i1 and

jn−1 . . . j1 can be consequtive.

2. If in = jn = 1 then i and j can be consecutive iff in−1jn−1 = 0 and

in−2 . . . i1 and jn−2 . . . j1 can be consecutive.

Hence i and j can be consecutive iff (i+1, j+1)-th entry of An is 1. De-

noting this entry by ai,j, the sum S(Ak−1
n ) =

2n−1∑
i1=0
· · ·

2n−1∑
ik=0

ai1i2ai2i3 . . . aik−1ik

counts the possible fillings. Therefore Fnk = S(Ak−1
n ).

The the obvious statement Fnk = Fkn completes the proof.

2.12 Solutions of Olympic 2005

2.12.1 Day 1

Problem 1. For n = 1 the rank is 1. Now assume n ≥ 2. Since

A = (i)ni,j=1 + (j)ni,j=1, matrix A is the sum of two matrixes of rank 1.

Therefore, the rank of A is at most 2. The determinant of the top-left

2× 2 minor is -1, so the rank is exactly 2. Therefore, the rank of A is 1

for n = 1 and 2 for n ≥ 2.

Solution 2. Consider the case n ≥ 2. For i = n, n−1, . . . , 2, subtract

the (i − 1)th row from the nth row. Then subtract the second row from
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all lower rows.

rank

 2 3 . . . n+ 1
3 4 . . . n+ 2
...

... . . . ...
n+ 1 n+ 2 . . . 2n

 = rank

2 3 . . . n+ 1
1 1 . . . 1
...

... . . . ...
1 1 . . . 1

 =

= rank


1 2 . . . n
1 1 . . . 1
0 0 . . . 0
...

... . . . ...
0 0 . . . 0

 = 2.

Problem 2. Extend the definitions also for n = 1, 2. Consider the

following sets

A′n = {(x1, x2, . . . , xn) ∈ An : xn−1 = xn}, A′′n = An\A′n,
B′n = {(x1, x2, . . . , xn) ∈ Bn : xn = 0}, B′′n = Bn\B′n

and denote an = |An|, a′n = |A′n|, a′′n = |A′′n|, bn = |Bn|, b′n = |B′n|, b′′n =

|B′′n|.
It is easy to observe the following relations between the a-sequencesan = a′n + a′′n

a′n+1 = a′′n
a′′n+1 = 2a′n + 2a′′n

,

which lead to an+1 = 2an + 2an−1.

For the b-sequences we have the same relationsbn = b′n + b′′n
b′n+1 = b′′n
b′′n+1 = 2b′n + 2b′′n

,

therefore bn+1 = 2bn + 2bn−1.

By computing the first values of (an) and (bn) we obtain{
a1 = 3, a2 = 9, a3 = 24
b1 = 3, b2 = 8

which leads to {
a2 = 3b1
a3 = 3b2
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Now, reasoning by induction, it is easy to prove that an+1 = 3bn for

every n ≥ 1.

Solution 2. Regarding xi to be elements of Z3 and working ”modulo

3” , we have that

(x1, x2, . . . , xn) ∈ An ⇒ (x1 + 1, x2 + 1, . . . , xn + 1) ∈ An,

(x1 + 2, x2 + 2, . . . , xn + 2 ∈ An

which means that
1

3
of the elements of An start with 0. We establish a

bijection between the subset of all the vectors in An+1 which start with

0 and the set Bn by

(0, x1, x2, . . . , xn) ∈ An+1 7→ (y1, y2, . . . , yn) ∈ Bn

y1 = x1, y2 = x2 − x1, y3 = x3 − x2, . . . , yn = xn − xn−1

(if yk = yk+1 = 0 then xk − xk−1 = xk+1 − xk = 0 (where x0 = 0), which

gives xk−1 = xk = xk+1, which is not possible because of the definition

of the sets Ap; therefore, the definition of the above function is correct).

The inverse is defined by

(y1, y2, . . . , yn) ∈ Bn 7→ (0, x1, x2, . . . , xn) ∈ An+1

x1 = y1, x2 = y1 + y2, . . . , xn = y1 + y2 + · · ·+ yn

Problem 3. Let M = max
0≤x≤1

|f ′(x)|. By the inequality −M ≤ f ′(x) ≤
M, x ∈ [0, 1] it follows:

−Mf(x) ≤ f(x)f ′(x) ≤Mf(x), x ∈ [0, 1].

By integration

−M
x∫

0

f(t)dt ≤ 1

2
f 2(x)− 1

2
f 2(0) ≤M

x∫
0

f(t)dt, x ∈ [0, 1]

−Mf(x)

x∫
0

f(t)dt ≤ 1

2
f 3(x)− 1

2
f 2(0)f(x) ≤Mf(x)

x∫
0

f(t)dt, x ∈ [0, 1].
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Integrating the last inequality on [0, 1] it follows that

−M
( 1∫

0

f(x)dx
)2
≤

1∫
0

f 3(x)dx−f 2(0)

1∫
0

f(x)dx ≤M
( 1∫

0

f(x)dx
)2
⇔

⇔
∣∣∣ 1∫

0

f 3(x)dx− f 2(0)

1∫
0

f(x)dx
∣∣∣ ≤M

( 1∫
0

f(x)dx
)2
.

Solution 2. Let M = max
0≤x≤1

|f ′(x)| and F (x) = −
1∫
x

f ; then F ′ =

f, F (0) = −
1∫
0
f and F (1) = 0. Integrating by parts,

1∫
0

f 3 =

1∫
0

f 2.F ′ = [f 2F ]10 −
1∫

0

(f 2)′F =

= f 2(1)F (1)− f 2(0)F (0)−
1∫

0

2Fff ′ = f 2(0)

1∫
0

f −
1∫

0

2Fff ′.

Then

∣∣∣ 1∫
0

f 3(x)dx− f 2(0)

1∫
0

f(x)dx
∣∣∣ =

∣∣∣ 1∫
0

2Fff ′
∣∣∣ ≤ 1∫

0

2Ff |f ′| ≤

≤M

1∫
0

2Ff = M.[F 2]10 = M
( 1∫

0

f
)2
.

Problem 4. Note that P (x) does not have any positive root because

P (x) > 0 for every x > 0. Thus, we can represent them in the form

αi, i = 1, 2, . . . , n, where αi ≥ 0. If a0 6= 0 then there is a k ∈ N, 1 ≤ k ≤
n− 1, with ak = 0, so using Viete’s formulae we get

α1α2 . . . αn−k−1αn−k + α1α2 . . . αn−k−1αn−k+1 + · · ·+ αk+1αk+2 . . . αn−1αn

=
ak
an

= 0,
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which is impossible because the left side of the equality is positive.

Therefore a0 = 0 and one of the roots of the polynomial, say αn, must

be equal to zero. Consider the polynomial Q(x) = anx
n−l + an−1x

n−2 +

· · · + a1. It has zeros −αi, i = 1, 2, . . . , n − 1. Again, Viete’s formulae,

for n ≥ 3, yield:

α1α2 . . . αn−1 =
a1

an
(1)

α1α2 . . . αn−2 + α1α2 . . . αn−3αn−1 + · · ·+ α2α3 . . . αn−1 =
a2

an
(2)

α1 + α2 + · · ·+ αn−1 =
an−1

an
. (3)

Dividing (2) by (1) we get

1

α1
+

1

α2
+ · · ·+ 1

αn−1
=
a2

a1
. (4)

From (3) and (4), applying the AM-HM inequality we obtain

an−1

(n− 1)an
=
α1 + α2 + · · ·+ αn−1

n− 1
≥ 1

1
α1

+ 1
α2

+ · · ·+ 1
αn−1

=
(n− 1)a1

a2
,

therefore
a2an−1

a1an
≥ (n − 1)2. Hence

n2

2
≥ a2an−1

a1an
≥ (n − 1)2, implying

n ≤ 3. So, the only polynomials possibly satisfying (i) and (ii) are those

of degree at most three. These polynomials can easily be found and they

are P (x) = x, P (x) = x2 + 2x, P (x) = 2x2 +x, P (x) = x3 + 3x2 + 2x and

P (x) = 2x3 + 3x2 + x.

Solution 2. Consider the prime factorization of P in the ring Z[x].

Since all roots of P are rational, P can be written as a product of n

linear polynomials with rational coefficients. Therefore, all prime factor

of P are linear and P can be written as

P (x) =
n∏
k=1

(bkx+ ck)

where the coefficients bk, ck are integers. Since the leading coefficient of

P is positive, we can assume bk > 0 for all k. The coefficients of P are
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nonnegative, so P cannot have a positive root. This implies ck ≥ 0. It

is not possible that ck = 0 for two different values of k, because it would

imply a0 = a1 = 0. So ck > 0 in at least n− 1 cases.

Now substitute x = 1.

P (1) = an + · · ·+ a0 = 0 + 1 + · · ·+n =
n(n+ 1)

2
=

n∏
k=1

(bk + ck) ≥ 2n−1;

therefore it is necessary that 2n−1 ≤ n(n+ 1)

2
, therefore n ≤ 4. More-

over, the number
n(n+ 1)

2
can be written as a product of n− 1 integers

greater than 1.

If n = 1, the only solution is P (x) = 1x+ 0.

If n = 2, we have P (1) = 3 = 1.3, so one factor must be x, the other

one is x + 2 or 2x + 1. Both x(x + 2) = 1x2 + 2x + 0 and x(2x + 1) =

2x2 + 1x+ 0 are solutions.

If n = 3, then P (1) = 6 = 1.2.3, so one factor must be x, another one

is x+ 1, the third one is again x+ 2 or 2x+ 1. The two polynomials are

x(x+1)(x+2) = 1x3+3x2+2x+0 and x(x+1)(2x+1) = 2x3+3x2+1x+0,

both have the proper set of coefficients.

In the case n = 4, there is no solution because
n(n+ 1)

2
cannot be

written as a product of 3 integers greater than 1.

Altogether we found 5 solutions: 1x+0, 1x2+2x+0, 2x2+1x+0, 1x3+

3x2 + 2x+ 0 and 2x3 + 3x2 + 1x+ 0.

Problem 5. Let g(x) = f ′(x) + xf(x); then f ′′(x) + 2xf ′(x) + (x2 +

1)f(x) = g′(x) + xg(x).

We prove that if h is a continuously differentiable function such that

h′(x) + xh(x) is bounded then lim
∞
h = 0. Applying this lemma for h = g

then for h = f , the statement follows.

Let M be an upper bound for |h′(x)+xh(x)| and let p(x) = h(x)ex
2/2.

(The function e−x
2/2 is a solution of the differential equation u′(x) +

xu(x) = 0.) Then

|p′(x)| = |h′(x) + xh(x)|ex2/2 ≤Mex
2/2



2.12. Solutions of Olympic 2005 146

and

|h(x)| =
∣∣∣p(x)

ex2/2

∣∣∣ =
∣∣∣p(0) +

x∫
0
p′

ex2/2

∣∣∣ ≤ |p(0)|+M
x∫
0
ex

2/2dx

ex2/2 .

Since lim
x→∞

ex
2/2 = ∞ and lim

x∫
0
ex

2/2dx

ex2/2 = 0 (by L’Hospital’s rule), this

implies lim
x→∞

h(x) = 0.

Solution 2. Apply L’Hospital rule twice on the fraction
f(x)ex

2/x

ex2/x
.

(Note that L’Hospital rule is valid if the denominator converges to infin-

ity, without any assumption on the numerator.)

lim
x→∞

f(x) = lim
x→∞

f(x)ex
2/2

ex2/2 = lim
x→∞

(f ′(x) + xf(x))ex
2/2

xex2/2

= lim
x→∞

(f ′′(x) + 2xf ′(x) + (x2 + 1)f(x))ex
2/2

(x2 + 1)ex2/2 =

= lim
x→∞

f ′′(x) + 2xf ′(x) + (x2 + 1)f(x)

x2 + 1
= 0.

Problem 6. Write d = gcd(m,n). It is easy to see that< G(m), G(n) >=

G(d); hence, it will suffice to check commutativity for any two elements

in G(m)∪G(n), and so for any two generators am and bn. Consider their

commutator z = a−mb−nambn; then the relations

z = (a−mbam)−nbn = a−m(b−nabn)m

show that z ∈ G(m) ∩G(n). But then z is in the center of G(d). Now,

from the relation ambn = bnamz, it easily follows by induction that

amlbnl = bnlamlzl
2

.

Setting l = m
d and l = n

d we obtain z(m/d)2 = z(n/d)2 = e, but this implies

that z = e as well.

2.12.2 Day 2

Problem 1. Write f(x) = (x+ b
2)2 + d where d = c− b2

4 . The absolute

minimum of f is d.
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If d ≥ 1 then f(x) ≥ 1 for all x,M = ∅ and |M | = 0.

If −1 < d < 1 then f(x) > −1 for all x,

−1 <
(
x+

b

2

)2
+ d < 1 ⇔

∣∣∣x+
b

2

∣∣∣ < √1− d

so

M =
(
− b

2
−
√

1− d,−b
2

+
√

1− d
)

and

|M | = 2
√

1− d < 2
√

2.

If d ≤ −1 then

−1 <
(
x+

b

2

)2
+ d < 1 ⇔

√
|d| − 1 <

∣∣∣x+
b

2

∣∣∣ <√|d|+ 1

so

M = (−
√
|d|+ 1,−

√
|d| − 1) ∪ (

√
|d| − 1,

√
|d|+ 1)

and

|M | = 2(
√
|d|+ 1−

√
|d| − 1) = 2

(|d|+ 1)− (|d| − 1)√
|d|+ 1 +

√
|d| − 1

≤

≤ 2
2√

1 + 1 +
√

1− 0
= 2
√

2.

Problem 2. Yes, it is even enough to assume that f 2 and f 3 are poly-

nomials.

Let p = f 2 and q = f 3. Write these polynomials in the form of

p = a.pa1
2 . . . pakk , q = b.qb11 . . . q

bl
l ,

where a, b ∈ R, a1, . . . , ak, b1, . . . , bl are positive integers and p1, . . . , pk,

q1, . . . , ql are irreducible polynomials with leading coefficients 1. For

p3 = q2 and the factorisation of p3 = q2 is unique we get that a3 =

b2, k = 1 and for some (i1, . . . , ik) permutation of (1, . . . , k) we have

p1 = qi1, . . . , pk = qik and 3a1 = 2bi1, . . . , 3ak = 2bik. Hence b1, . . . , bl are

divisible by 3 let r = b1/3.q
b1/3
1 . . . q

bl/3
l be a polynomial. Since r3 = q = f 3

we have f = r.



2.12. Solutions of Olympic 2005 148

Solution 2. Let
p

q
be the simplest form of the rational function

f 3

f 2 . Then the simplest form of its square is
p2

q2 . On the other hand

p2

q2 =
(f 3

f 2

)2
= f 2 is a polynomial therefore q must be a constant and so

f =
f 3

f 2 =
p

q
is a polynomial.

Problem 3. If A is a nonzero symmetric matrix, then trace(A2) =

trace(AtA) is the sum of the squared entries of A which is positive. So

V cannot contain any symmetric matrix but 0.

Denote by S the linear space of all real n × n symmetric matrices;

dimV =
n(n+ 1)

2
. Since V ∩ S = {0}, we have dimV + dimS ≤ n2 and

thus dimV ≤ n2 − n(n+ 1)

2
=
n(n− 1)

2
.

The space of strictly upper triangular matrices has dimension
n(n− 1)

2
and satisfies the condition of the problem.

Therefore the maximum dimension of V is
n(n− 1)

2
.

Problem 4. Let

g(x) = −f(−1)

2
x2(x−1)−f(0)(x2−1)+

f(1)

2
x2(x+1)−f ′(0)x(x−1)(x+1).

It is easy to check that g(±1) = f(±1), g(0) = f(0) and g′(0) = f ′(0).

Apply Rolle’s theorem for the function h(x) = f(x) − g(x) and its

derivatives. Since h(−1) = h(0) = h(1) = 0, there exist η ∈ (−1, 0) and

ϑ ∈ (0, 1) such that h′(η) = h′(ϑ) = 0. We also have h′(0) = 0, so there

exist % ∈ (η, 0) and σ ∈ (0, ϑ) such that h′′(%) = h′′(σ) = 0. Finally,

there exists a ξ ∈ (%, σ) ⊂ (−1, 1) where h′′′(ξ) = 0. Then

f ′′′(ξ) = g′′′(ξ) = −f(−1)

2
.6−f(0).0+

f(1)

2
.6−f ′(0).6 =

f(1)− f(−1)

2
−f ′(0).

Solution 2. The expression
f(1)− f(−1)

2
− f ′(0) is the divided

difference f [−l, 0, 0, 1] and there exists a number ξ ∈ (−1, 1) such that

f [−1, 0, 0, 1] =
f ′′′(ξ)

3!
.
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Problem 5. To get an upper bound for r, set f(x, y) = x − x2

2
+

y2

2
. This function satisfies the conditions, since grad f(x, y) = (1 −

x, y), grad f(0, 0) = (1, 0) and (|grad f(x1, y1) − grad f(x2, y2)| = |(x2 −
x1, y1 − y2)| = |(x1, y1)− (x2, y2)|

In the disk Dr = {(x, y) : x2 + y2 ≤ r2}

f(x, y) =
x2 + y2

2
−
(
x− 1

2
)2 +

1

4
≤ r2

2
+

1

4
.

If r >
1

2
then the absolute maximum is

r2

2
+

1

4
, attained at the points(1

2
,±
√
r2 − 1

4

)
. Therefore, it is necessary that r ≤ 1

2
because if r >

1

2
then the maximum is attained twice.

Suppose now that r ≤ 1

2
and that f attains its maximum on Dr at

u, v, u 6= v. Since |grad f(z)− grad f(0)| ≤ r, |grad f(z)1 ≤ 1− r > 0 for

all z ∈ Dr. Hence f may attain its maximum only at the boundary of Dr,

so we must have |u| = |v| = r and grad f(u) = au and grad f(v) = bv,

where a, b ≥ 0. Since au = grad f(u) and bv = grad f(v) belong to

the disk D with centre grad f(0) and radius r, they do not belong to the

interior of Dr. Hence |grad f(u)−grad f(v)| = |au−bv| ≥ |u−v| and this

inequality is strict since D ∩Dr contains no more than one point. But

this contradicts the assumption that |grad f(u) − grad f(v)| ≤ |u − v|.
So all r ≤ 1

2
satisfies the condition.

Problem 6. First consider the case when q = 0 and r is rational.

Choose a positive integer t such that r2t is an integer and set(
a b
c d

)
=

(
1 + rt −r2t
t 1− rt

)
.

Then

det
(
a b
c d

)
and

ar + b

cr + d
=

(1 + rt)r − r2t

tr + (1− rt)
= r.

Now assume q 6= 0. Let the minimal polynomial of r in Z[x] be ux2 +

vx + w. The other root of this polynomial is r = p − q
√

7, so v =
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−u(r + r) = −2up and w = urr = u(p2 − 7q2). The discriminant is

v2−4uw = 7.(2uq)2. The left-hand side is an integer, implying that also

4 = 2uq is an integer.

The equation
ar + b

cr + d
= r is equivalent to cr2 + (d− a)r− b = 0. This

must be a multiple of the minimal polynomial, so we need

c = ut, d− a = vt, −b = wt

for some integer t 6= 0. Putting together these equalities with ad−bc = 1

we obtain that

(a+ d)2 = (a− d)2 + 4ad = 4 + (v2 − 4uw)t2 = 4 + 742t2.

Therefore 4 + 742t2 must be a perfect square. Introducing s = a + d,

we need an integer solution (s, t) for the Diophantine equation

s2 − 742t2 = 4 (1)

such that t 6= 0.

The numbers s and t will be even. Then a + d = s and d − a = vt

will be even as well and a and d will be really integers.

Let (8 ± 3
√

7)n = kn ± ln
√

7 for each integer n. Then k2
n − 7l2n =

(kn + ln
√

7)(kn− ln
√

7) = ((8 + 3
√

7)n(8− 3
√

7))n = 1 and the sequence

(ln) also satisfies the linear recurrence ln+1 = 16ln − ln−1. Consider the

residue of ln modulo 4. There are 42 possible residue pairs for (ln, ln+1)

so some are the same. Starting from such two positions, the recurrence

shows that the sequence of residues is periodic in both directions. Then

there are infinitely many indices such that ln ≡ l0 = 0 (mod 4).

Taking such an index n, we can set s = 2kn and t = 2ln/4.

Remarks. 1. It is well-known that if D > 0 is not a perfect square

then the Pell-like Diophantine equation

x2 +Dy2 = 1

has infinitely many solutions. Using this fact the solution can be gener-

alized to all quadratic algebraic numbers.
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2. It is also known that the continued fraction of a real number r is

periodic from a certain point if and only if r is a root of a quadratic

equation. This fact can lead to another solution.

2.13 Solutions of Olympic 2006

2.13.1 Day 1

Problem 1.

a) False. Consider function f(x) = x3−x. It is continuous, range(f) =

R but, for example, f(0) = 0, f(1
2) = −3

8 and f(1) = 0, therefore

f(0) > f(1
2), f(1

2) < f(1) and f is not monotonic.

b) True. Assume first that f is non-decreasing. For an arbitrary

number a, the limits lim
a−
f and lim

a+
f exist and lim

a−
f ≤ lim

a+
f . If the two

limits are equal, the function is continuous at a. Otherwise, if lim
a−
f =

b < lim
a+
f = c, we have f(x) ≤ b for all x < a and f(x) ≥ c for all x > a;

therefore range(f) ⊂ (−∞, b)∪ (c,∞)∪ {f(a)} cannot be the complete

R.

For non-increasing f the same can be applied writing reverse relations

or g(x) = −f(x).

c) False. The function g(x) = arctanx is monotonic and continuous,

but range(g) = (−π
2 ,

π
2 ) 6= R.

Problem 2. Let Sk = {0 < x < 10k|x2 − x is divisible by 10k} and

s(k) = |Sk|, k ≥ 1. Let x = ak+1ak . . . a1 be the decimal writing of an

integer x ∈ Sk+1, k ≥ 1. Then obviously y = ak . . . a1 ∈ Sk. Now, let

y = ak . . . a1 ∈ Sk be fixed. Considering ak+1 as a variable digit, we have

x2 − x = (ak+110k + y)2 − (ak+110k + y) = (y2 − y) + ak+110k(2y − 1) +

a2
k+1102k. Since y2 − y = 10kz for an iteger z, it follows that x2 − x is

divisible by 10k+1 if and only if z + ak+1(2y − 1) ≡ 0 (mod 10). Since

y ≡ 3 (mod 10) is obviously impossible, the congruence has exactly one

solution. Hence we obtain a one-to-one correspondence between the sets

Sk+1 and Sk for every k ≥. Therefore s(2006) = s(1) = 3, because
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S1 = {1, 5, 6}.
Solution 2. Since x2 − x = x(x − 1) and the numbers x and x − 1

are relatively prime, one of them must be divisible by 22006 and one of

them (may be the same) must be divisible by 52006. Therefore, x must

satisfy the following two conditions:

x ≡ 0 or 1 (mod 22006);

x ≡ 0 or 1 (mod 52006).

Altogether we have 4 cases. The Chinese remainder theorem yields that

in each case there is a unique solution among the numbers 0, 1, . . . , 102006−
1. These four numbers are different because each two gives different

residues modulo 22006 or 52006. Moreover, one of the numbers is 0 which

is not allowed.

Therefore there exist 3 solutions.

Problem 3. By induction, it is enough to consider the case m = 2. Fur-

thermore, we can multiply A with any integral matrix with determinant

1 from the right or from the left, without changing the problem. Hence

we can assume A to be upper triangular.

Lemma. Let A be an integral upper triangular matrix, and let b, c be

integers satisfying detA = bc. Then there exist integral upper triangular

matrices B,C such that detB = b, detC = c, A = BC.

Proof. The proof is done by induction on n, the case n = 1 being

obvious. Assume the statement is true for n − 1. Let A, b, c as in the

statement of the lemma. Define Bnn to be the greatest common divisor

of b and Ann, and put Cnn =
Ann

Bnn
. Since Ann divides bc, Cnn divides

b

Bnn
c, which divides c. Hence Cnn divides c. Therefore, b′ =

b

Bnn
and

c′ =
c

Cnn
are integers. Define A′ to be the upper-left (n− 1)× (n− 1)-

submatrix of A; then detA′ = b′c′. By induction we can find the upper-

left (n−1)×(n−1)-part ofB and C in such a way that detB = b, detC = c

and A = BC holds on the upper-left (n− 1)× (n− 1)-submatrix of A.
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It remains to define Bi,n and Ci,n such that A = BC also holds for the

(i, n)-th entry for all i < n.

First we check that Bii and Cnn are relatively prime for all i < n.

Since Bii divides b′, it is certainly enough to prove that b′ and Cnn are

relatively prime, i.e.

gcd
( b

gcd(b, Ann)
,

Ann

gcd(b, Ann)

)
= 1,

which is obvious. Now we define Bj,n and Cj,n inductively: Suppose we

have defined Bi,n and Ci,n for all i = j + 1, j + 2, . . . , n − 1. Then Bj,n

and Cj,n have to satisfy

Aj,n = Bj,jCj,n +Bj,j+1Cj+1,n + · · ·+Bj,nCn,n

Since Bj,j and Cn,n are relatively prime, we can choose integers Cj,n and

Bj,n such that this equation is satisfied. Doing this step by step for all

j = n− 1, n− 2, . . . , 1, we finally get B and C such that A = BC.

Problem 4. Let S be an infinite set of integers such that rational

function f(x) is integral for all X ∈ S. Suppose that f(x) =
p(x)

q(x)
where

p is a polynomial of degree k and q is a polynomial of degree n. Then

p, q are solutions to the simultaneous equations p(x) = q(x)f(x) for all

x ∈ S that are not roots of q. These are linear simultaneous equations

in the coefficients of p, q with rational coefficients. Since they have a

solution, they have a rational solution.

Thus there are polynomials p′, q′ with rational coefficients such that

p′(x) = q′(x)f(x) for all x ∈ S that are not roots of q. Multiplying this

with the previous equation, we see that p′(x)q(x)f(x) = p(x)q′(x)f(x)

for all x ∈ S that are not roots of q. If x is not a root of p or q, then

f(x) 6= 0, and hence p′(x)q(x) = p(x)q′(x) for all x ∈ S except for

finitely many roots of p and q. Thus the two polynomials p′q and pq′ are

equal for infinitely many choices of value. Thus p′(x)q(x) = p(x)q′(x).

Dividing by q(x)q′(x), we see that dfracp′(x)q′(x) =
p(x)

q(x)
= f(x). Thus
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f(x) can be written as the quotient of two polynomials with rational

coefficients. Multiplying up by some integer, it can be written as the

quotient of two polynomials with integer coefficients.

Suppose f(x) =
p′′(x)

q′′(x)
where p′′ and q′′ both have integer coeffi-

cients. Then by Euler’s division algorithm for polynomials, there ex-

ist polynomials s and r, both of which have rational coefficients such

that p′′(x) = q′′(x)s(x) + r(x) and the degree of r is less than the de-

gree of q′′. Dividing by q′′(x), we get that f(x) = s(x) +
r(x)

q′′(x)
. Now

there exists an integer N such that Ns(x) has integral coefficients. Then

Nf(x) − Ns(x) is an integer for all x ∈ S. However, this is equal to

the rational function
Nr

q′′
, which has a higher degree denominator than

numerator, so tends to 0 as x tends to ∞. Thus for all sufficiently large

x ∈ S,Nf(x) − Ns(x) = 0 and hence r(x) = 0. Thus r has infinitely

many roots, and is 0. Thus f(x) = s(x), so f is a polynomial.

Problem 5. Without loss of generality a ≥ b ≥ c, d ≥ e. Let c2 =

e2 +4,4 ∈ R. Then d2 = a2 + b2 +4 and the second equation implies

a4 + b4 + (e2 +4)2 = (a2 + b2 +4)2 + e4, 4 = − a2b2

a2 + b2 − e2 .

(Here a2 + b2 − e2) ≥ 2

3
(a2 + b2 + c2)− 1

2
(d2 + e2) =

1

6
(d2 + e2) > 0).

Since c2 = e2 − a2b2

a2 + b2 − e2 =
(a2 − e2)(e2 − b2)
a2 + b2 − e2 > 0 then a > e > b.

Therefore d2 = a2 + b2 − a2b2

a2 + b2 − e2 < a2 and a > d ≥ e > b ≥ c.

Consider a function f(x) = ax + bx + cx − dx − ex, x ∈ R. We shall

prove that f(x) has only two zeroes x = 2 and x = 4 and changes the

sign at these points. Suppose the contrary. Then Rolle’s theorem implies

that f ′(x) has at least two distinct zeroes. Without loss of generality

a = 1. Then f ′(x) = ln b.bx+ ln c.cx− ln d.dx− ln e.ex, x ∈ R. If f ′(x1) =

f ′(x2) = 0, x1 < x2, then ln b.bxi + ln c.cxi = ln d.dxi + ln e.exi, i = 1, 2,
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but since 1 > d ≥ e > b ≥ c we have

(−ln b).bx2 + (−ln c).cx2

(−ln b).bx1 + (−ln c).cx1
≤ bx2−x1 < ex2−x1 ≤ (−ln d).dx2 + (−ln e).ex2

(−ln d).dx1 + (−ln e).ex1
,

a contradiction. Therefore f(x) has a constant sign at each of the inter-

vals (−∞, 2), (2, 4) and (4,∞). Since f(0) = 1 then f(x) > 0, x ∈
(−∞, 2) ∪ (4,∞) and f(x) < 0, x ∈ (2, 4). In particular, f(3) =

a3 + b3 + c3 − d3 − e3 < 0.

Problem 6. Let A(x) = a0 + a1x + · · · + anx
n. We prove that se-

quence a0, . . . , an satisfies the required property if and only if all zeros

of polynomial A(x) are real.

a) Assume that all roots of A(x) are real. Let us use the following

notations. Let I be the identity operator on R → R functions and D

be differentiation operator. For an arbitrary polynomial P (x) = p0 +

p1x + · · · + pnx
n, write P (D) = p0I + p1D + p2D

2 + · · · + pnD
n. Then

the statement can written as (A(D)f)(ξ) = 0.

First prove the statement for n = 1. Consider the function

g(x) = e
a0
a1 f(x).

Since g(x0) = g(x1) = 0, by Rolle’s theorem there exists aξ ∈ (x0, x1)

for which

g′(ξ) =
a0

a1
e
a0
a1
ξf(ξ) + e

a0
a1
ξf ′(ξ) =

e
a0
a1
ξ

a1
(a0f(ξ) + a1f

′(ξ)) = 0.

Now assume that n > 1 and the statement holds for n − 1. Let

A(x) = (x − c)B(x) where c is a real root of polynomial A. By the

n = 1 case, there exist y0 ∈ (x0, x1), y1 ∈ (x1, x2), . . . , yn−1 ∈ (xn−1, xn)

such that f ′(yj) − cf(yj) = 0 for all j = 0, 1, . . . , n − 1. Now apply

the induction hypothesis for polynomial B(x), function g = f ′ − cf and

points y0, . . . , yn−1. The hypothesis says that there exists a ∈ (y0, yn−1 ⊂
(x0, xn) such that

(B(D)g)(ξ) = (B(D)(D − cI)f)(ξ) = (A(D)f)(ξ) = 0.
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b) Assume that u+vi is a complex root of polynomial A(x) such that

v 6= 0. Consider the linear differential equation ang
(n)+· · ·+a1g

′+g = 0.

A solution of this equation is g1(x) = eux sin vx which has infinitely many

zeros.

Let k be the smallest index for which ak 6= 0. Choose a small ε > 0 and

set f(x) = g1(x) + εxk. If ε is sufficiently small then g has the required

number of roots but a0f + a1f
′ + · · ·+ anf

(n) = akε 6= 0 everywhere.

2.13.2 Day 2

Problem 1. Apply induction on n. For the initial cases n = 3, 4, 5,

chose the triangulations shown in the Figure to prove the statement.

Now assume that the statement is true for some n = k and con-

sider the case n = k + 3. Denote the vertices of V by P1, . . . , Pk+3

Apply the induction hypothesis on the polygon P1P2 . . . Pk in this tri-

angulation each of vertices P1, . . . , Pk belong to an odd number of tri-

angles, except two vertices if n is not divisible by 3. Now add trian-

gles P1PkPk+2, PkPk+1Pk+2 and P1Pk+2Pk+3. This way we introduce two

new triangles at vertices P1 and Pk so parity is preserved. The vertices

Pk+l, Pk+2 and Pk+3 share an odd number of triangles. Therefore, the

number of vertices shared by even number of triangles remains the same

as in polygon P1P2 . . . Pk.

Problem 2. The functions f(x) = x+ c and f(x) = −x+ c with some

constant c obviously satisfy the condition of the problem. We will prove

now that these are the only functions with the desired property.

Let f be such a function. Then f clearly satisfies |f(x) − f(y)| ≤
|x− y| for all x, y; therefore, f is continuous. Given x, y with x < y, let

a, b ∈ [x, y] be such that f(a) is the maximum and f(b) is the minimum

of f on [x, y]. Then f([x, y]) = [f(b), f(a)]; hence

y − x = f(a)− f(b) ≤ |a− b| ≤ y − x

This implies {a, b} = {x, y}, and therefore f is a monotone function.
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Suppose f is increasing. Then f(x) − f(y) = x − y implies f(x) − x =

f(y)−y, which says that f(x) = x+c for some constant c. Similarly, the

case of a decreasing function f leads to f(x) = −x+ c for some constant

c.

Problem 3. Let f(x) = tan(sin x)− sin(tanx). Then

f ′(x) =
cosx

cos2(sinx)
− cos(tanx)

cos2 x
=

cos3 x− cos(tanx). cos2(sinx)

cos2(x). cos2(tanx)

Let 0 < x < arctan π
2 . It follows from the concavity of cosine on (0, π2 )

that
3
√

cos(tanx). cos2(sinx) <
1

3
[cos(tanx) + 2 cos(sinx)]

≤ cos
[tanx+ 2 sinx

3

]
< cosx,

the last inequality follows from[tanx+ 2 sinx

3

]′
=

1

3

[ 1

cos2 x
+ 2 cosx

]
≥ 3

√
1

cos2 x
. cosx. cosx = 1.

This proves that cos3 x − cos(tanx). cos2(sinx) > 0, so f ′(x) > 0, so f

increases on the interval [0, arctan π
2 ]. To end the proof it is enough to

notice that (recall that 4 + π2 < 16)

tan
[

sin
(

arctan
π

2

)]
= tan

π/2√
1 + π2/4

> tan
π

4
= 1.

This implies that if x ∈ [arctan π
2 ,

π
2 ] then tan(sinx) > 1 and therefore

f(x) > 0.

Problem 4. By passing to a subspace we can assume that v1, . . . , vn

are linearly independent over the reals. Then there exist λ1, . . . , λn ∈ R
satisfying

vn+1 =
n∑
j=1

λjvj

We shall prove that λj is rational for all j. From

−2 < vi, vj >= |vi − vj|2 − |vi|2 − |vj|2
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we get that < vi, vj > is rational for all i, j. Define A to be the rational

n× n-matrix Aij =< vi, vj >,w ∈ Qn to be the vector wi =< vi, vn+1 >,

and λ ∈ Rn to be the vector (λi)i Then,

< vi, vi+1 >=
n∑
j=1

λj < vi, vj >

gives Aλ = w. Since v1, . . . , vn are linearly independent, A is invertible.

The entries of A−1 are rationals, therefore λ = A−1w ∈ Qn, and we are

done.

Problem 5. Substituting y = x+m, we can replace the equation by

y3 − ny +mn = 0.

Let two roots be u and v; the third one must be w = −(u+ v) since the

sum is 0. The roots must also satisfy

uv + uw + vw = −(u2 + uv + v2) = −n, i.e. u2 + uv + v2 = n

and

uvw = −uv(u+ v) = mn.

So we need some integer pairs (u, v) such that uv(u + v) is divisible by

u2 + uv + v2. Look for such pairs in the form u = kp, v = kq. Then

u2 + uv + v2 = k2(p2 + pq + q2),

and

uv(u+ v) = k3pq(p+ q).

Chosing p, q such that they are coprime then setting k = p2 + pq+ q2 we

have
uv(u+ v)

u2 + uv + v2 = p2 + pq + q2.

Substituting back to the original quantites, we obtain the family of

cases

m = (p2 + pq + q2)3, m = p2q + pq2,

and the three roots are

x1 = p3, x2 = q3, x3 = −(p+ q)3.
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Problem 6. We note that the problem is trivial if Aj = λI for some j,

so suppose this is not the case. Consider then first the situation where

some Aj, say A3, has two distinct real eigenvalues. We may assume that

A3 = B3 =
(
λ
µ

)
by conjugating both sides. Let A2 =

(
a b
c d

)
and

B2 =

(
a′ b′

c′ d′

)
. Then

a+ d = TrA2 = TrB2 = a′ + d′

aλ+ dµ = Tr(A2A3) = Tr(A−1
1 = TrB−1

1 = Tr(B2B3) = a′λ+ d′µ.

Hence a = a′ and d = d′ and so also bc = b′c′. Now we cannot have

c = 0 or b = 0, for then (1, 0)T or (0, 1)T would be a common eigenvector

of all Aj. The matrix S =

(
c′

c

)
conjugates A2 = S−1B2S, and as S

commutes with A3 = B3, it follows that Aj = S−1BjS for all j.

If the distinct eigenvalues of A3 = B3 are not real, we know from

above that Aj = S−1BjS for some S ∈ GL2C unless all Aj have a com-

mon eigenvector over C. Even if they do, say Ajv = λjv, by taking the

conjugate square root it follows that A′js can be simultaneously diago-

nalized. If A2 =
(
a
d

)
and B2 =

(
a′ b′

c′ d′

)
, it follows as above that

a = a′, d = d′ and so b′c′ = 0. Now B2 and B3 (and hence B1 too)

have a common eigenvector over C so they too can be simultaneously

diagonalized. And so SAj = BjS for some S ∈ GL2C in either case.

Let S0 = ReS and S1 = ImS. By separating the real and imaginary

components, we are done if either S0 or S1 is invertible. If not, So may

be conjugated to some T−1S0T =
(
x 0
y 0

)
, with (x, y)T 6= (0, 0)T , and it

follows that all Aj have a common eigenvector T (0, 1)T , a contradiction.

We are left with the case when n0Aj has distinct eigenvalues; then

these eigenvalues by necessity are real. By conjugation and division

by scalars we may assume that A3 =
(

1 b
1

)
and b 6= 0. By further

conjugation by upper-triangular matrices (which preserves the shape of

A3 up to the value of b) we can also assume that A2 =
(

0 u
1 v

)
. Here
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v2 = Tr2A2 = 4detA2 = −4u. Now A1 = A−1
3 A−1

2 =

(
−(b+ v)/u 1

1/u

)
,

and hence
b+ v)2

u2 = Tr2A1 = 4detA1 = −4

u
. Comparing these two it

follows that b = −2v. What we have done is simultaneously reduced all

Aj to matrices whose all entries depend on u and v (= −detA2 and TrA2,

respectively) only, but these themselves are invariant under similarity.

So Bj’s can be simultaneously reduced to the very same matrices.

2.14 Solutions of Olympic 2007

2.14.1 Day 1

Problem 1. Let f(x) = ax2 + bx + c. Substituting x = 0, x = 1 and

x = −1, we obtain that 5|f(0) = c, 5|f(1) = (a + b + c) and 5|f(−1) =

(a− b+ c). Then 5|f(1) + f(−1)− 2f(0) = 2a and 5|f(1)− f(−1) = 2b.

Therefore 5 divides 2a, 2b and c and the statement follows.

Solution 2. Consider f(x) as a polynomial over the 5-element field (i.e.

modulo 5). The polynomial has 5 roots while its degree is at most 2.

Therefore f ≡ 0 (mod 5) and all of its coefficients are divisible by 5.

Problem 2. The minimal rank is 2 and the maximal rank is n. To

prove this, we have to show that the rank can be 2 and n but it cannot

be 1.

(i) The rank is at least 2. Consider an arbitrary matrix A = [aij] with

entries 1, 2, . . . , n2 in some order. Since permuting rows or columns of a

matrix does not change its rank, we can assume that 1 = a11 < a21 <

· · · < an1 and 1 = a11 < a12 < · · · < a1n. Hence an1 > n and a1n > n

and at least one of these inequalities is strict. Then det
[
a11 a1n
an1 ann

]
<

1.n2 − n.n = 0 so rk(A) > rk
[
a11 a1n
an1 ann

]
> 2.
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(ii) The rank can be 2. Let

T =

 1 2 . . . n
n+ 1 n+ 2 . . . 2n

...
... . . . ...

n2 − n+ 1 n2 − n+ 2 . . . n2


The i-th row is (1, 2, . . . , n) + n(i − 1).(1, 1, . . . , 1) so each row is in

the two-dimensional subspace generated by the vectors (1, 2, . . . , n) and

(1, 1, . . . , 1). We already proved that the rank is at least 2, so rk(T ) = 2.

(iii) The rank can be n, i.e. the matrix can be nonsingular. Put odd

numbers into the diagonal, only even numbers above the diagonal and

arrange the entries under the diagonal arbitrarily. Then the determinant

of the matrix is odd, so the rank is complete.

Problem 3. The possible values for k are 1 and 2.

If k = 1 then P (x) = αx2 and we can choose A1 =
(

1 0
0 α

)
.

If k = 2 then P (x, y) = αx2 + βy2 + γxy and we can choose matrices

A1 =
(

1 0
0 α

)
and A2 =

(
1 β
−1 γ

)
.

Now let k > 3. We show that the polynomial P (x1, . . . , xk) =
k∑
i=0

x2
i

is not good. Suppose that P (x1, . . . , xk) = det

(
k∑
i=0

xiAi

)
. Since the

first columns of A1, . . . , Ak are linearly dependent, the first column of

some non-trivial linear combination y1A1 + · · · + ykAk is zero. Then

det(y1A1 + · · ·+ ykAk) = 0 but P (y1, . . . , yk) 6= 0, a contradiction.

Problem 4. We start with three preliminary observations.

Let U, V be two arbitrary subsets of G. For each x ∈ U and y ∈ V
there is a unique z ∈ G for which xyz = e. Therefore,

NUV G = |U × V | = |U |.|V |.

Second, the equation xyz = e is equivalent to yzx = e and zxy = e.

For arbitrary sets U, V,W ⊂ G, this implies

{(x, y, z) ∈ U × V ×W : xyz = e} = {(x, y, z) ∈ U × V ×W : yzx = e}
= {(x, y, z) ∈ U × V ×W : zxy = e}
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and therefore

NUVW = NVWU = NWUV .

Third, if U, V ⊂ G and W1,W2,W3 are disjoint sets and W = W1 ∪
W2 ∪W3 then, for arbitrary U, V ⊂ G,

{(x, y, z) ∈ U × V ×W : xyz = e} = {(x, y, z) ∈ U × V ×W1 : xyz = e}∪
∪{(x, y, z) ∈ U × V ×W2 : xyz = e} ∪ {(x, y, z) ∈ U × V ×W3 : xyz = e}

so

NUVW = NUVW1
+NUVW2

+NUVW3
.

Applying these observations, the statement follows as

NABC = NABG −NABA −NABB = |A|.|B| −NBAA −NBAB

= NBAG −NBAA −NBAB = NBAC = NCBA.

Problem 5. Let us define a subset I of the polynomial ring R[X] as

follows:

I =
{
P (X) =

m∑
j=0

bjX
j :

m∑
j=0

bjf(k + jl) = 0 for all k, l ∈ Z, l 6= 0
}
.

This is a subspace of the real vector space R[X]. Furthermore, P (X) ∈ I
implies X.P (X) ∈ I. Hence, I is an ideal, and it is non-zero, because

the polynomial R(X) =
n∑
i=1

Xai belongs to I. Thus, I is generated (as

an ideal) by some non-zero polynomial Q.

If Q is constant then the definition of I implies f = 0, so we can

assume that Q has a complex zero c. Again, by the definition of I, the

polynomial Q(Xm) belongs to I for every natural number m > 1; hence

Q(X) divides Q(Xm). This shows that all the complex numbers

c, c2, c3, c4, . . .

are roots of Q. Since Q can have only finitely many roots, we must have

cN = 1 for some N > 1; in particular, Q(1) = 0, which implies P (1) = 0
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for all P ∈ I. This contradicts the fact that R(X) =
n∑
i=1

Xai ∈ I, and

we are done.

Problem 6. We show that the number of nonzero coefficients can be 0, 1

and 2. These values are possible, for example the polynomials P0(z) =

0, P1(z) = 1 and P2(z) = 1 + z satisfy the conditions and they have 0, 1

and 2 nonzero terms, respectively.

Now consider an arbitrary polynomial P (z) = a0 + a1z + · · · + anz
n

satisfying the conditions and assume that it has at least two nonzero

coefficients. Dividing the polynomial by a power of z and optionally

replacing p(z) by −p(z), we can achieve a0 > 0 such that conditions are

not changed and the numbers of nonzero terms is preserved. So, without

loss of generality, we can assume that a0 > 0.

Let Q(z) = a1z + · · ·+ an−1z
n−1. Our goal is to show that Q(z) = 0.

Consider those complex numbers w0, w1, . . . , wn−1 on the unit circle

for which anw
n
k = |an|; namely, let

wk =

{
e

2kπi
n if an > 0

e
(2k+1)πi

n if an < 0
(k = 0, 1, . . . , n).

Notice that

n−1∑
k=0

Q(wk) =
n−1∑
k=0

Q
(
w0e

2kπi
n

)
=

n−1∑
j=1

ajw
j
0

n−1∑
k=0

(
e

2jπi
n

)k
= 0.

Taking the average of polynomial P (z) at the points wk, we obtained

1

n

n−1∑
k=0

P (wk) =
1

n

n−1∑
k=0

(a0 +Q(wk) + anw
n
k ) = a0 + |an|

and

2 >
1

n

n−1∑
k=0

|P (wk)| >

∣∣∣∣∣1n
n−1∑
k=0

P (wk)

∣∣∣∣∣ = a0 + |an| > 2.

This obviously implies a0 = |an| = 1 and |P (wk)| = |2 + Q(wk)| = 2 for

all k. Therefore, all values of Q(wk) must lie on the circle |2 + z| = 2,
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while their sum is 0. This is possible only if Q(wk) = 0 for all k. Then

polynomial Q(z) has at least n distinct roots while its degree is at most

n−1. SoQ(z) = 0 and P (z) = a0+anz
n has only two nonzero coefficients.

Remark. From Parseval’s formula (i.e. integrating |P (z)|2 = P (z)P (z)

on the unit circle) it can be obtained that

|a0|2 + · · ·+ |an|2 =
1

2π

2π∫
0

|P (eit)|2dt 6
1

2π

2π∫
0

4dt = 4. (2.2)

Hence, there cannot be more than four nonzero coefficients, and if there

are more than one nonzero term, then their coefficients are ±1.

It is also easy to see that equality in (2.2) cannot hold two or more

nonzero coefficients, so it is sufficient to consider only polynomials of the

form 1 ± xm ± xn. However, we do not know any simpler argument for

these cases than the proof above.

2.14.2 Day 2

Problem 1. No. The function f(x) = ex also has this property since

cex = ex+log c.

Problem 2. We claim that 29|x, y, z. Then, x4 + y4 + z4 is clearly

divisible by 294.

Assume, to the contrary, that 29 does not divide all of the numbers

x, y, z. Without loss of generality, we can suppose that 29 - x. Since the

residue classes modulo 29 form a field, there is some w ∈ Z such that

xw ≡ 1 (mod 29). Then (xw)4 + (yw)4 + (zw)4 is also divisible by 29.

So we can assume that x ≡ 1 (mod 29).

Thus , we need to show that y4 +z4 ≡ −1 (mod 29), i.e. y4 ≡ −1−z4

(mod 29), is impossible. There are only eight fourth powers modulo 29,
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0 ≡ 04,

1 ≡ 14 ≡ 124 ≡ 174 ≡ 284 (mod 29),

7 ≡ 84 ≡ 94 ≡ 204 ≡ 214 (mod 29),

16 ≡ 24 ≡ 54 ≡ 244 ≡ 274 (mod 29),

20 ≡ 64 ≡ 144 ≡ 154 ≡ 234 (mod 29),

23 ≡ 34 ≡ 74 ≡ 224 ≡ 264 (mod 29),

24 ≡ 44 ≡ 104 ≡ 194 ≡ 254 (mod 29),

25 ≡ 114 ≡ 134 ≡ 164 ≡ 184 (mod 29).

The differences −1−z4 are congruent to 28, 27, 21, 12, 8, 5, 4 and 3. None

of these residue classes is listed among the fourth powers.

Problem 3. Suppose f(x) 6= x for all x ∈ C. Let [a, b] be the smallest

closed interval that contains C. Since C is closed, a, b ∈ C. By our

hypothesis f(a) > a and f(b) < b. Let p = sup{x ∈ C : f(x) > x}.
Since C is closed and f is continuous, f(p) > p, so f(p) > p. For all

x > p/, x ∈ C we have f(x) < x. Therefore f
(
f(p)

)
< f(p) contrary to

the fact that f is non-decreasing.

Problem 4. Notice thatA = B2, with bij =

{
1 if i− j ≡ ±1 (mod n)
0 otherwise

.

So it is sufficient to find detB.

To find detB, expand the determinant with respect to the first row,

and then expad both terms with respect to the first columns.

detB =

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1
1 0 1

1 0 1

1 . . . . . .
. . . 0 1

1 0 1
1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
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= −

∣∣∣∣∣∣∣∣∣∣∣

1 1
0 1

1 . . . . . .
. . . 0 1

1 0 1
1 1 0

∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣

1 0 1
1 0 1

1 . . . . . .
. . . 0 1

1 0
1 1

∣∣∣∣∣∣∣∣∣∣∣
= −


∣∣∣∣∣∣∣∣∣
0 1

1 . . . . . .
. . . 0 1

1 0 1
1 0

∣∣∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣∣∣
1
0 1

1 . . . . . .
. . . 0 1

1 0 1

∣∣∣∣∣∣∣∣∣

+

+


∣∣∣∣∣∣∣∣∣
1 0 1

1 . . . . . .
. . . 0 1

1 0
1

∣∣∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣∣∣
0 1
1 0 1

1 . . . . . .
. . . 0 1

1 0

∣∣∣∣∣∣∣∣∣

 = −(0− 1) + (1− 0) = 2,

since the second and the third matrices are lower/upper triangular, while

in the first and the fourth matrices we have row1 − row3 + row5 − · · · ±
rown−2 = 0.

So detB = 2 and thus detA = 4.

Problem 5. The answer is nk = 2k. In that case, the matrices can

be constructed as follows: Let V be the n-dimensional real vector space

with basis elements [S], where S runs through all n = 2k subsets of

{1, 2, . . . , k}. Define Ai as an endomorphism of V by

Ai[S] =

{
0 if i ∈ S
[S ∪ {i}] if i /∈ S

for all i = 1, 2, . . . , k and S ⊂ {1, 2, . . . , k}. Then A2
i = 0 and AiAj =

AjAi. Furthermore,

A1A2 . . . Ak[∅] = [{1, 2, . . . , k}],

and hence A1A2 . . . Ak 6= 0.

Now let A1, A2, . . . , Ak be n× n matrices satisfying the conditions of

the problem; we prove that n > 2k. Let v be a real vector satisfying
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A1A2 . . . Akv 6= 0. Denote by P the set of all subsets of {1, 2, . . . , k}.
Choose a complete ordering ≺ on P with the property

X ≺ Y ⇒ |X| 6 |Y | for all X, Y ∈ P .

For every element X = {x1, x2, . . . , xr} ∈ P , define AX = Ax1
Ax2

. . . Axr

and vX = AXv. Finally, write X = {1, 2, . . . , k} \X for the complement

of X.

Now take X, Y ∈ P with X � Y . Then AX annihilates vY , because

X � Y implies the existence of some y ∈ Y \X = Y ∩X, and

AXvY = AX\{y}AyAyvY \{y} = 0,

since A2
y = 0. So AX annihilates the span of all the vY with X � Y . This

implies that vX does not lie in this span, because AXvX = v{1,2,...,k} 6= 0.

Therefore, the vectors vX (with X ∈ P) are linearly independent; hence

n > |P| = 2k.

Problem 6. For the proof, we need the following

Lemma 1. For any polynomial g, denote by d(g) the minimum

distance of any two of its real zeros (d(g) = ∞ if g has at most one

real zero). Assume that g and g + g′ both are of degree k > 2 and have

k distinct real zeros. Then d(g + g′) > d(g).

Proof of Lemma 1: Let x1 < x2 < · · · < xk be the roots of g. Suppose

a, b are roots of g + g′ satisfying 0 < b − a < d(g). Then a, b cannot be

roots of g and

g′(a)

g(a)
=
g′(b)

g(b)
= −1. (2.3)

Since
g′

g
is strictly decreasing between consecutive zeros of g, we must

have a < xj < b for some j.

For all i = 1, 2, . . . , k − 1 we have xi+1 − xi > b − a, hence a − xi >
b − xi+1. If i < j, both sides of this inequality are negative; if i > j,
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both sides are positive. In any case,
1

a− xi
<

1

b− xi+1
, and hence

g′(a)

g(a)
=

k−1∑
i=1

1

a− xi
+

1

a− xk︸ ︷︷ ︸
<0

<
k−1∑
i=1

1

b− xi+1
+

1

b− x1︸ ︷︷ ︸
>0

=
g′(b)

g(b)

This contrdicts (2.3).

Now we turn to the proof of the stated problem. Denote by m the

degree of f . We will prove by induction on m that fn has m distinct

real zeros for sufficient large n. The cases m = 0, 1 are trivial; so we

assume m > 2. Without loss of generality we can assume that f is

monic. By induction, the result holds for f ′, and by ignoring the first

few terms we can assume that f ′n has m− 1 distinct real zeros for all n.

Let denote these zeros by x
(n)
1 > x

(n)
2 > · · · > x

(n)
m−1. Then fn has minima

in x
(n)
1 , x

(n)
3 , x

(n)
5 , . . . , and maxima in x

(n)
2 , x

(n)
4 , x

(n)
6 , . . . . Note that in the

interval (x
(n)
i+1, x

(n)
i ), the function f ′n+1 = f ′n + f ′′n must have a zero (this

follows by applying Rolle’s theorem to the function exf ′n(x)); the same is

true for the interval (−∞, x(n)
m−1). Hence, in each of these m−1 intervals,

f ′n+1 has exactly one zero. This shows that

x
(n)
1 > x

(n+1)
1 > x

(n)
2 > x

(n+1)
2 > x

(n)
3 > x

(n+1)
3 > . . . (2.4)

Lemma 2. We have lim
n→∞

fn
(
x

(n)
j

)
= −∞ if j is odd, and lim

n→∞
fn
(
x

(n)
j

)
=

+∞ if j is even.

Lemma 2 immediately implies the result: For sufficiently large n, the

values of all maxima of fn are positive, and the values of all minima of

fn are negative; this implies that fn has m distinct zeros.

Proof of Lemma 2: Let d = min{d(f ′), 1}; then by Lemma 1, d(f ′n) >

g for all n. Define ε =
(m− 1)dm−1

mm−1 ; we will show that

fn+1
(
x

(n+1)
j

)
> fn

(
x

(n)
j

)
+ ε for j even. (2.5)

(The corresponding result for odd j can be shown similarly.) Do to so,

write f = fn, b = x
(n)
j , and choose a satisfying d 6 b − a 6 1 such that



2.14. Solutions of Olympic 2007 169

f ′ has no zero inside (a, b). Define ξ by the relation b − ξ =
1

m
(b − a);

then ξ ∈ (a, b). We show that f(ξ) + f ′(ξ) > f(b) + ε.

Notice that

f ′′(ξ)

f ′(ξ)
=

m−1∑
i=1

1

ξ − x(n)
i

=
∑
i<j

1

ξ − x(n)
i︸ ︷︷ ︸

< 1
ξ−a

+
1

ξ − b
+
∑
i>j

1

ξ − x(n)
i︸ ︷︷ ︸

<0

< (m− 1)
1

ξ − a
+

1

ξ − b
= 0.

The last equality holds by definition of ξ. Since f ′ is positive and
f ′′

f ′
is

decreasing in (a, b), we have that f ′′ is negative on (ξ, b). Therefore,

f(b)− f(ξ) =

b∫
ξ

f ′(t)dt 6

b∫
ξ

f ′(ξ)dt = (b− ξ)f ′(ξ).

Hence,

f(ξ) + f ′(xi) > f(b)− (b− ξ)f ′(ξ) + f ′(ξ)

= f(b) + (1− (ξ − b))f ′(ξ)

= f(b) +
(
1− 1

m
(b− a)

)
f ′(ξ)

> f(b) +
(
1− 1

m

)
f ′(ξ).

Together with

f ′(ξ) = |f ′(ξ)| = m
m−1∏
i=1

|ξ − x(n)
i |︸ ︷︷ ︸

>|ξ−b|

> m|ξ − b|m−1 >
dm−1

mm−1

we get

f(ξ) + f ′(ξ) > f(b) + ε.

Together with (2.4) this shows (2.5). This finishes the proof of Lemma

2.
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2.15 Solutions of Olympic 2008

2.15.1 Day 1

Problem 1. We prove that f(x) = ax + b where a ∈ Q and b ∈ R.

These functions obviously satify the conditions.

Suppose that a function f(x) fulfills the required properties. For an

arbitrary rational q, consider the function gq(x) = f(x+ q)− f(x). This

is a continuous function which attains only rational values, therefore gq

is constant.

Set a = f(1) − f(0) and b = f(0). Let n be an arbitrary positive

integer and let r = f
(1

n

)
−f(0). Since f

(
x+

1

n

)
−f(x) = f

(1

n

)
−f(0) = r

for all x, we have

f
(k
n

)
− f(0) =

(
f
(1

n

)
− f(0)

)
+
(
f
(2

n

)
− f

(1

n

))
+ · · ·+

(
f
(k
n

)
− f

(k − 1

n

))
= kr

and

f
(
− k

n

)
− f(0) = −

(
f(0)− f

(
− 1

n

))
−
(
f
(
− 1

n

)
− f

(
− 2

n

))
− · · · −

(
f
(
− k − 1

n

)
− f

(
− k

n

))
= −kr for k > 1.

In the case k = n we get a = f(1) − f(0) = nr, so r =
a

n
. Hence,

f
(k
n

)
− f(0) = kr =

ak

n
and then f

(k
n

)
= a.

k

n
+ b for all integer k and

n > 0.

So, we have f(x) = ax + b for all rational x. Since the function f is

continuous and the rational numbers form a dense subset of R, the same

holds for all real x.

Problem 2. We can assume that P 6= 0.

Let f ∈ V be such that P (f) 6= 0. Then P (f 2) 6= 0, and therefore

P (f 2) = aP (f) for some non-zero real a. Then 0 = P (f 2 − af) =

P (f(f − a)) implies P (f − a) = 0, so we get P (a) 6= 0. By rescaling,
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we can assume that P (1) = 1. Now P (X + b) = 0 for b = −P (X).

Replacing P by P̂ given as

P̂ (f(X)) = P (f(X + b))

we can assume that P (X) = 0.

Now we are going to prove that P (Xk) = 0 for all k > 1. Suppose

this is true for all k < n. We know that P (Xn+ e) = 0 for e = −P (Xn).

From the induction hypothesis we get

P ((X + e)(X + 1)n−1) = P (Xn + e) = 0,

and therefore P (X + e) = 0 (since P (X + 1) = 1 6= 0). Hence e = 0 and

P (Xn) = 0, which completes the inductive step. From P (1) = 1 and

P (Xk) = 0 for k > 1 we immediately get P (f) = f(0) for all f ∈ V .

Problem 3. The theorem is obvious if p(ai) = 0 for some i, so assume

that all p(ai) are nonzero and pairwise different.

There exist numbers s, t such that s|p(a1), t|p(a2), st = lcm(p(a1), p(a2))

and gsd(s, t) = 1.

As s, t are relatively prime numbers, there exist m,n ∈ Z such that

a1 + sn = a2 + tm =: b2. Obviously s|p(a1 + sn) − p(a1) and t|p(a2 +

tm)− p(a2), so st|p(b2).
Similarly one obtains b3 such that p(a3)|p(b3) and p(b2)|p(b3) thus also

p(a1)|p(b3) and p(a2)|p(b3).
Reasoning inductively we obtain the existence of a = bk as required.

The polynomial p(x) = 2x2 + 2 shows that the second part of the

problem is not true, as p(0) = 2, p(1) = 4 but no value of p(a) is divisible

by 8 for integer a.

Remark. One can assume that the p(ai) are nonzero and ask for a such

that p(a) is a nonzero multiple of all p(ai). In the solution above, it can

happen that p(a) = 0. But every number p(a + np(a1)p(a2) . . . p(ak)) is

also divisible by every p(ai), since the polynomial is nonzero, there exists

n such that p(a+ np(a1)p(a2) . . . p(ak)) satisfies the modified thesis.
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Problem 4. The answer is n > 4.

Consider the following set of special triples:(
0,

8

15
,

7

15

)
,
(2

5
, 0,

3

5

)
,
(3

5
,
2

5
, 0
)
,
( 2

15
,
11

15
,

2

15

)
.

We will prove that any special triple (x, y, z) is worse than one of

these (triple a is worse than triple b if triple b is better than triple a).

We suppose that some special triple (x, y, z) is actually not worse than

the first three of the triples from the given set, derive some conditions

on x, y, z and prove that, under these conditions, (x, y, z) is worse than

the fourth triple from the set.

Triple (x, y, z) is not worse than
(
0, 8

15 ,
7
15

)
means that y > 8

15 or

z > 7
15 . Triple (x, y, z) is not worse than

(2
5 , 0,

3
5

)
— x > 2

5 or z > 3
5 .

Triple (x, y, z) is not worse than
(3

5 ,
2
5 , 0
)

— x > 3
5 or z > 2

5 . Since

x + y + z = 1, then it is impossible that all inequalities x > 2
5 , y > 2

5

and z > 7
15 are true. Suppose that x < 2

5 , then y > 2
5 and z > 3

5 . Using

x+ y+ z = 1 and x > 0 we get x = 0, y = 2
5 , z = 3

5 . We obtain the triple(
0, 2

5 ,
3
5

)
which is worse than

( 2
15 ,

11
15 ,

2
15

)
. Suppose that y < 2

5 , then x > 3
5

and y > 7
15 and this is a contradiction to the admissibility of (x, y, z).

Suppose that z < 7
15 , then x > 2

5 and y > 8
15 . We get (by admissibility,

again) that z 6 1
15 and y 6 3

5 . The last inequalities imply that
( 2

15 ,
11
15 ,

2
15

)
is better than (x, y, z).

We will prove that for any given set of three special triples one can

find a special triple which is not worse than any triple from the set.

Suppose we have a set S of three special triples

(x1, y1, z1), (x2, y2, z2), (x3, y3, z3).

Denote

a(S) = min(x1, x2, x3), b(S) = min(y1, y2, y3), c(S) = min(z1, z2, z3).
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It is easy to check that S1:( x1 − a
1− a− b− c

,
y1 − b

1− a− b− c
,

z1 − c
1− a− b− c

)
( x2 − a

1− a− b− c
,

y2 − b
1− a− b− c

,
z2 − c

1− a− b− c

)
( x3 − a

1− a− b− c
,

y3 − b
1− a− b− c

,
z3 − c

1− a− b− c

)

is a set of three special triples also (we may suppose that a+ b+ c < 1,

because otherwise all three triples are equal and our statement is trivial).

If there is a special triple (x, y, z) which is not worse than any triple

from S1, then the triple

((1− a− b− c)x+ a, (1− a− b− c)y + b, (1− a− b− c)z + c)

is special and not worse than any triple from S. We also have a(S1) =

b(S1) = c(S1) = 0, so we may suppose that the same holds for our

starting set S.

Suppose that one element of S has two entries equal to 0.

Note that one of the two remaining triples from S is not worse than

the other. This triple is also not worse than all triples from S because

any special triple is not worse than itself and the triple with two zeroes.

So we have a = b = c = 0 but we may suppose that all triples from

S contain at most one zero. By transposing triples and elements in

triples (elements in all triples must be transposed simultaneously) we

may achieve the following situation x1 = y2 = z3 = 0 and x2 > x3. If

z2 > z1, then the second triple (x2, 0, z2) is not worse than the other two

triples from S. So we may assume that z1 > z2. If y1 > y3, then the first

triple is not worse than the second and the third and we assume y3 > y1.

Consider the three pairs of numbers x2, y1; z1, x3; y3, z2. The sum of all

these numbers is three and consequently the sum of the numbers in one

of the pairs is less than or equal to one. If it is the first pair then the

triple (x2, 1 − x2, 0) is not worse than all triples from S, for the second
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we may take (1−z1, 0, z1) and for the third — (0, y3, 1−y3). So we found

a desirable special triple for any given S.

Problem 5. Yes. Let H be the commutative group H = F3
2, where

F2
∼= Z/2Z is the field with two elements. The group of automorphisms

of H is the general linear group GL3F2; it has

(8− 1).(8− 2).(8− 4) = 7.6.4 = 168

elements. One of them is the shift operator φ : (x1, x2, x3) 7→ (x2, x3, x1).

Now let T = {a0, a1, a2} be a group of order 3 (written multiplica-

tively); it acts on H by τ(a) = φ. Let G be the semidirect product

G = H oτ T . In other words, G is the group of 24 elements

G = {bai : b ∈ H, i ∈ (Z/3Z)}, ab = φ(b)a.

G has one element e of order 1 and seven elements b, b ∈ H, b 6= e of

order 2.

If g = ba, we find that g2 = baba = bφ(b)a2 6= e, and that

g3 = bφ(b)a2ba = bφ(b)aφ(b)a2 = bφ(b)φ2(b)a3 = ψ(b),

where the homomorphism ψ : H → H is defined as ψ : (x1, x2, x3) 7→
(x1 +x2 +x3)(1, 1, 1). It is clear that g3 = ψ(b) = e for 4 elements b ∈ H,

while g6 = ψ2(b) = e for all b ∈ H.

We see that G has 8 elements of order 3, namely ba and ba2 with

b ∈ kerψ, and 8 elements of order 6 namely ba and ba2 with b /∈ kerψ.

That accounts for orders of all elements of G.

Let b0 ∈ H \kerψ be arbitrary; it is easy to see that G is generated by

b0 and a. As every automorphism of G is fully determined by its action

on b0 and a, it follows that G has no more than 7.8 = 56 automorphisms.

Remark. G and H can be equivalently presented as subgroups of S6,

namely as H =
〈
(135)(246), (12)

〉
.
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Problem 6. Consider the n× n determinant

∆(x) =

∣∣∣∣∣∣∣∣
1 x . . . xn−1

x 1 . . . xn−2

...
... . . .

...
xn−1 xn−2 . . . 1

∣∣∣∣∣∣∣∣
where the ij-th entry is x|i−j|. From the definition of the determinant

we get

∆(x) =
∑

(i1,i2,...,in)∈Sn

(−1)inv(i1,i2,...,in)xD(i1,i2,...,in)

where Sn is the set of all permutations of (1, 2, . . . , n) and inv(i1, i2, . . . , in)

denotes the number of inversions in the sequence (i1, i2, . . . , in). So

Q(n, d) has the same parity as the coefficients of xd in ∆(x).

It remains to evaluate ∆(x). In order to eliminate the entries below

the diagonal, subtract the (n− 1)-th row, multipled by x, from the n-th

row. Then subtract the (n−2)-th row, multipled by x, from the (n−1)-

th and so on. Finally, subtract the first row, multipled by x, from the

second row.

∆(x) =

∣∣∣∣∣∣∣∣∣∣
1 x . . . xn−2 xn−1

x 1 . . . xn−3 xn−2

...
... . . . ...

...
xn−2 xn−3 . . . 1 x
xn−1 xn−2 . . . x 1

∣∣∣∣∣∣∣∣∣∣
= · · · =

∣∣∣∣∣∣∣∣∣∣
1 x . . . xn−2 xn−1

0 1− x2 . . . xn−3 − xn−1 xn−2 − xn
...

... . . .
...

...
0 0 . . . 1− x2 x− x2

0 0 . . . 0 1− x2

∣∣∣∣∣∣∣∣∣∣
= (1− x2)n−1.

For d > 2n, the coefficient of xd is 0 so Q(n, d) is even.

2.15.2 Day 2

Problem 1. Let f(x) = x2n + xn + 1, g(x) = x2k − xk + 1, h(x) =

x2k + xk + 1. The complex number x1 = cos
(
π
3k

)
+ i sin

(
π
3k

)
is a root of

g(x).
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Let α = πn
3k . Since g(x) divides f(x), f(x1) = g(x1) = 0. So, 0 =

x2n
1 + xn1 + 1 =

(
cos(2α) + i sin(2α)

)
+
(

cosα + i sinα
)

+ 1 = 0, and

(2 cosα + 1)
(

cosα + i sinα
)

= 0. Hence 2 cosα + 1 = 0, i.e. α =

±2π
3 + 2πc, where c ∈ Z.

Let x2 be a root of the polynomial h(x). Since h(x) = x3k−1
xk−1 , the roots

of the polynomial h(x) are distinct and they are x2 = cos 2πs
3k + i sin 2πs

3k ,

where s = 3a± 1, a ∈ Z. It is enough to prove that f(x2) = 0. We have

f(x2) = x2n
2 +xn2+1 =

(
cos(4sα)+sin(4sα)

)
+
(

cos(2sα)+sin(2sα)
)
+1 =(

2 cos(2sα) + 1
)(

cos(2sα) + i sin(2sα)
)

= 0 (since 2 cos(2sα) + 1 =

2 cos
(
2s(±2π

3 + 2πc)
)

+ 1 = 2 cos
(4πs

3

)
+ 1 = 2 cos

(4π
3 (3a± 1)

)
+ 1 = 0).

Problem 2. It is well known that an ellipse might be defined by a

focus (a point) and a directrix (a straight line), as a locus of points

such that the distance to the focus divided by the distance to directrix

is equal to a given number e < 1. So, if a point X belongs to both

ellipses with the same focus F and directrices l1.l2, then e1.l1X = FX =

e2.l2X (here we denote by l1X, l2X distances between the corresponding

line and the point X). The equation e1.l1X = e2.l2X defines two lines

whose equations are linear combinations with coefficients e1,±e2 of the

normalized equations of lines l1, l2 but of those two only one is relevant,

since X and F should lie on the same side of each directrix. So, we have

that all possible points lie on one line. The intersection of a line and an

ellipse consists of at most two points.

Problem 3. As is known, the Fibonacci numbers Fn can be expressed

as Fn = 1√
5

((1+
√

5
2

)n − (1−
√

5
2

)n)
. Expanding this expression, we obtain

that Fn = 1
2n−1

((
n
1

)
+
(
n
3

)
5 + · · · +

(
n
l

)
5
l−1
2

)
, where l is the greatest odd

numbers such that l 6 n and s = l−1
2 6 n

2 .

So, Fn = 1
2n−1

s∑
k=0

(
n

2k+1

)
5k, which implies that 2n−1 divides

∑
06k6n

2

(
n

2k+1

)
5k.

Problem 4. Let f(x) = g(x)h(x) where h(x) is a polynomial with

integer coefficients.

Let a1, . . . , a81 be distinct integer roots of the polynomial f(x) −
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2008. Then f(ai) = g(ai)h(ai) = 2008 for i = 1, . . . , 81. Hence,

g(a1), . . . , g(a81) are integer divisors of 2008.

Since 2008 = 23.251 (2, 251 are primes) then 2008 has exactly 16

distinct integer divisors (including the negative divisors as well). By

the pigeonhole principle, there are at least 6 equal numbers among

g(a1), . . . , g(a81) (because 81 > 16.5). For example, g(a1) = g(a2) =

· · · = g(a6) = c. So g(x)−c is a nonconstant polymial which has at least

6 distinct roots (namely a1, . . . , a6). Then the degree of the polynomial

g(x)− c is at least 6.

Problem 5. Call a square matrix of type (B), if it is of the form
0 b12 0 . . . b1,2k−2 0
b21 0 b23 . . . 0 b2,2k−1
0 b32 0 . . . b3,2k−2 0
...

...
... . . . ...

...
b2k−2,1 0 b2k−2,3 . . . 0 b2k−2,2k−1

0 b2k−1,2 0 . . . b2k−1,2k−2 0


Note that every matrix of this form has determinant zero, because it has

k columns spanning a vector space of dimension at most k − 1.

Call a square matrix of type (C), if it is of the form

C ′ =



0 c11 0 c12 . . . 0 c1,k
c11 0 c12 0 . . . c1,k 0
0 c21 0 c22 . . . 0 c2,k
c21 0 c22 0 . . . c2,k 0
...

...
...

... . . . ...
...

0 ck,1 0 ck,2 . . . 0 ck,k
ck,1 0 ck,2 0 . . . ck,k 0


By permutations of rows and columns, we see that

| detC ′| =

∣∣∣∣∣ det
(
C 0
0 C

) ∣∣∣∣∣ = | detC|2,

where C denotes the k × k-matrix with coefficients ci,j. Therefore, the

determinant of any matrix of type (C) is a perfect square (up to a sign).

Now let X ′ be the matrix obtained from A by replacing the first

row by (1 0 0 . . . 0), and let Y be the matrix obtained from A by
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replacing the entry a11 by 0. By multi-linearity of the determinant,

det(A) = det(X ′) + det(Y ). Note that X ′ can be written as

X ′ =
(

1 0
v X

)
for some (n − 1) × (n − 1)-matrix X and some column vector v. Then

det(A) = det(X) + det(Y ). Now consider two cases. If n is old, then X

is of type (C), and Y is of type (B). Therefore, | det(A)| = | det(X)| is a

perfect square. If n is even, then X is of type (B), and Y is of type (C);

hence | det(A)| = | det(Y )| is a perfect square.

The set of primes can be replaced by any subset of {2}∪{3, 5, 7, 9, 11, . . . }.
Problem 6. It is clear that, if B is an orthonormal system in a Hilbert

space H, then { d√
2
e : e ∈ B} is a set of points in H, any two of which

are at distance d apart. We need to show that every set S of equidistant

points is a translate of such a set.

We begin by noting that, if x1, x2, x3, x4 ∈ S are four distinct points,

then〈
x2 − x1, x2 − x1

〉
= d2,〈

x2 − x1, x3 − x1
〉

=
1

2

(
‖x2 − x1‖2 + ‖x3 − x1‖2 − ‖x2 − x3‖2

)
=

1

2
d2,〈

x2 − x1, x4 − x3
〉

=
〈
x2 − x1, x4 − x1

〉
−
〈
x2 − x1, x3 − x1

〉
=

1

2
d2 − 1

2
d2 = 0.

This shows that scalar products among vectors which are finite linear

combinations of the form

λ1x1 + λ2x2 + · · ·+ λnxn,

where x1, x2, . . . , xn are distinct points in S and λ1, λ2, . . . λn are integers

with λ1 + λ1 + · · · + λ1 = 0, are universal across all such sets S in all

Hilbert spacesH; in particular, we may conveniently evaluate them using

examples of our choosing, such as the canonical example above in Rn. In

fact this property trivially follows also when coefficients λi are rational,

and hence by continuity any real numbers with sum 0.
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If S = {x1, x2, . . . , xn} is a finite set, we form

x =
1

n
(x1 + x2 + · · ·+ xn),

pick a nonzero vector z ∈ [Span(x1− x, x2− x, . . . , xn− x)]⊥ and seek y

in the form y = x+ λz for a suitable λ ∈ R. We find that〈
x1− y, x2− y

〉
=
〈
x1−x−λz, x2−x−λz

〉
=
〈
x1−x, x2−x

〉
+λ2‖z‖2,〈

x1 − x, x2 − x
〉

may be computed by our remark above as

〈
x1 − x, x2 − x

〉
=
d2

2

〈(1

n
− 1,

1

n
,

1

n
, . . . ,

1

n

)⊥
,
(1

n
,

1

n
− 1,

1

n
, . . . ,

1

n

)⊥〉
Rn

=
d2

2

(2

n

(1

n
− 1
)

+
n− 2

n2

)
= − d

2

2n
.

So the choice λ =
d√

2n‖z‖
will make all vectors

√
2

d
(xi − y) orthogonal

to each other; it is easily checked as above that they will also be of length

one.

Let now S be an infinite set. Pick an infinite sequence

T = {x1, x2, . . . , xn, . . . }

of distinct points in S. We claim that the sequence

yn =
1

n
(x1 + x2 + · · ·+ xn)

is a Cauchy sequence in H. (This is the crucial observation). Indeed, for

m > n, the norm ‖ym − yn‖ may be computed by the above remark as

‖ym − yn‖2 =
d2

2

∥∥∥( 1

m
− 1

n
, . . . ,

1

m
− 1

n
,

1

m
,

1

m

)>∥∥∥2

Rm

=
d2

2

(n(m− n)2

m2n2 +
m− n
m2

)
=
d2

2

(m− n)(m− n+ n)

m2n
=
d2

2

m− n
mn

=
d2

2

(1

n
− 1

m

)
→ 0, m, n→∞.
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By completeness of H, it follows that there exists a limit

y = lim
n→∞

yn ∈ H.

We claim that y satisfies all conditions of the problem. For m > n > p,

with n, p fixed, we compute

‖xn − ym‖2 =
d2

2

∥∥∥(− 1

m
, . . . ,− 1

m
, 1− 1

m
,− 1

m
, . . . ,− 1

m

)>∥∥∥2

Rm

=
d2

2

[m− 1

m2 +
(m− 1)2

m2

]
=
d2

2

m− 1

m
→ d2

2
, m→∞,

showing that ‖xn − y‖ = d√
2
, as well as

〈
xn − ym, xp − ym

〉
=
d2

2

〈(
− 1

m
, . . . ,− 1

m
, . . . , 1− 1

m
, . . . ,− 1

m

)⊥
,

(
− 1

m
, . . . , 1− 1

m
, . . . ,− 1

m
, . . . ,− 1

m

)⊥〉
Rm

=
d2

2

[m− 2

m2 − 2

m

(
1− 1

m

)]
= − d2

2m
→ 0, m→∞,

showing that
〈
xn − y, xp − y

〉
= 0, so that{√

2

d
(xn − y) : n ∈ N

}
is indeed an orthonormal system of vectors.

This completes the proof in case when T = S, which we can always

take if S is countable. If it is not, let x′, x′′ be any two distinct points in

S \ T . Then applying the above procedure to the set

T ′ = {x′, x′′, x1, x2, . . . , xn, . . . }

it follows that

lim
n→∞

x′ + x′′ + x1 + x2 + · · ·+ xn
n+ 2

= lim
n→∞

x1 + x2 + · · ·+ xn
n

= y

satisfies that{√
2

d
(x′ − y),

√
2

d
(x′′ − y)

}
∪

{√
2

d
(xn − y) : n ∈ N

}
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is still an orthonormal system.

This it true for any distinct x′, x′′ ∈ S \ T ; it follows that the entire

system {√
2

d
(x− y) : x ∈ S

}
is an orthonormal system of vectors in H, as required.


